精英家教网 > 高中数学 > 题目详情
3.设变量x,y满足约束条件:$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ 2x-y-3≤0\end{array}\right.$,则目标函数z=2x+3y+4的最小值为(  )
A.10B.11C.12D.27

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ 2x-y-3≤0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x+y-3=0}\\{2x-y-3=0}\end{array}\right.$,解得A(2,1),
化目标函数z=2x+3y+4为$y=-\frac{2}{3}x+\frac{z-4}{3}$,
由图可知,当直线$y=-\frac{2}{3}x+\frac{z-4}{3}$过A时,直线在y轴上的截距最小,z有最小值为11.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知偶函数f(x),奇函数g(x)的图象分别如图(1)、图(2)所示,若f(y0)=0且y0=g(x0),则x0的值为-1,0,或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.记不等式组$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$所表示的平面区域为D,若直线y=a(x+1)与区域D有公共点,则实数a的取值范围为(  )
A.($\frac{1}{2}$,$\frac{4}{3}$)B.[$\frac{4}{3}$,4]C.[$\frac{4}{3}$,3)D.[$\frac{1}{2}$,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.
(Ⅰ)试估计该校高三学生视力在5.0以上的人数;(Ⅱ)为了进一步调查学生的护眼习惯,学习小组成员进行分层抽样,在视力4.2~4.4和5.0~5.2的学生中抽取9人,并且在这9人中任取3人,记视力在4.2~4.4的学生人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,直线y=x被椭圆C截得的线段长为$\frac{{4\sqrt{10}}}{5}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线与椭圆C交于两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.设直线BD,AM斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx+x,g(x)=$\frac{1}{2}$mx2+mx-1(m为整数).
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数y=f(x)的图象始终在函数y=g(x)图象的下方,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线C:x2=4y,F为抛物线焦点,圆E:x2+(y+1)2=1,斜率为k(k>0)的直线l与抛物线C和圆E都相切,切点分别为P和Q,直线PF和PQ分别交x轴于点M,N.
(Ⅰ)求直线l的方程;
(Ⅱ)求△PMN内切圆半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,M,N是函数y=2sin(ωx+ϕ)(ω>0)图象与x轴的交点,点P在M,N之间的图象上运动,当△MPN面积最大时,PM⊥PN,则ω=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有一个五边形ABCDE,若把顶点A,B,C,D,E涂上红、黄、绿三种颜色中的一种,使得相邻的顶点所涂的颜色不同,则共有30种不同的涂色方法.

查看答案和解析>>

同步练习册答案