精英家教网 > 高中数学 > 题目详情
13.已知偶函数f(x),奇函数g(x)的图象分别如图(1)、图(2)所示,若f(y0)=0且y0=g(x0),则x0的值为-1,0,或1.

分析 根据g(x)的图象便可得到-1≤y0≤1,而由f(x)的图象及f(y0)=0便可得出y0=0,从而便可由g(x)的图象和g(x0)=0即可解出x0的值.

解答 解:根据g(x)的图象得,-1≤y0≤1;
∴由f(x)的图象及f(y0)=0得,y0=0;
∴g(x0)=0;
∴x0=-1,0,或1.
故答案为:-1,0,或1.

点评 考查根据函数图象求函数值域的方法,以及根据函数图象求函数零点的方法,求函数零点时要注意自变量的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图,点E是平行四边形ABCD对角线BD的4等分点中最靠近点D的那个分点,线段AE的延长线交CD于点F,若|$\overrightarrow{AB}$|=2,|$\overrightarrow{AD}$|=1,<$\overrightarrow{AB}$,$\overrightarrow{AD}$>=60°,则$\overrightarrow{AF}$•$\overrightarrow{AD}$的值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在坡角(坡面与水平面的夹角)为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆的仰角分别为60°和30°,且第一排和最后一排的距离10$\sqrt{6}$米,则旗杆的高度为30米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校高三数学备课组为了更好的制定二轮复习的计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题.重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学认为“不过关”,现随机调查了年级50人,他们的测试成绩的频数分别如表:
 期末分数段 (0,60)[60,75)[75,90)[90,105)[105,120)[120,150]
 人数 5 10 15 10 5 5
“过关”人数 2 7 4
(1)由以上统计数据完成如下2×2列联表,并判断是否有95%的把认为期末数学成绩不低于90分与测试“过关”有关?说明你的理由.
 分数低于90分人数 分数不低于90分人数  合计
 过关人数   
 不过关人数   
 合计   
(2)在期末分数段[105,120)的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为X,求X的分布列及数学期望.
下面的临界值表供参考:
 P(K2≥k) 0.150.10  0.050.025 
 K2.072  2.7063.841  5.024
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,矩形ABCD中,BC=2,AB=1,PA⊥平面ABCD,BE∥PA,BE=$\frac{1}{2}$PA,F为PA的中点.
(1)求证:PC∥平面BDF.
(2)记四棱锥C-PABE的体积为V1,三棱锥P-ACD的体积为V2,求$\frac{V_1}{V_2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a∈R,则a=1是复数$z=\frac{1+ai}{1-ai}$(i为虚数单位)为纯虚数的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个三棱锥的顶点在空间直角坐标系O-xyz中的坐标分别是(0,0,1),(1,0,0),(2,2,0),(2,0,0),画该三棱锥三视图的俯视图时,从x轴的正方向向负方向看为正视方向,从z轴的正方向向负方向看为俯视方向,以xOy平面为投影面,则得到俯视图可以为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下:
甲电商:
消费金额(单位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]
频数50200350300100
乙电商:
消费金额(单位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]
频数250300150100200
(Ⅰ)根据频数分布表,完成下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);

(Ⅱ)运用分层抽样分别从甲、乙1000名消费者中各自抽出20人放在一起,在抽出的40人中,从消费金额不小于4千元的人中任取2人,求这2人恰好是来自不同电商消费者的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件:$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ 2x-y-3≤0\end{array}\right.$,则目标函数z=2x+3y+4的最小值为(  )
A.10B.11C.12D.27

查看答案和解析>>

同步练习册答案