·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²ÀëÐÄÂʵõ½a£¬bµÄ¹ØÏµ£¬»¯¼òÍÖÔ²·½³Ì£¬ºÍÖ±Ïß·½³ÌÁªÁ¢ºóÇó³ö½»µãµÄºá×ø±ê£¬°ÑÏÒ³¤Óý»µãºá×ø±ê±íʾ£¬ÔòaµÄÖµ¿ÉÇ󣬽øÒ»²½µÃµ½bµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©Éè³öA£¬DµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¨x1y1¡Ù0£©£¬£¨x2£¬y2£©£¬ÓÃAµÄ×ø±ê±íʾBµÄ×ø±ê£¬°ÑABºÍADµÄбÂʶ¼ÓÃAµÄ×ø±ê±íʾ£¬Ð´³öÖ±ÏßADµÄ·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢ºóÀûÓøùÓëϵÊý¹ØÏµµÃµ½ADºá×Ý×ø±êµÄºÍ£¬Çó³öADÖеã×ø±ê£¬ÔòBDбÂÊ¿ÉÇó£¬ÔÙд³öBDËùÔÚÖ±Ïß·½³Ì£¬È¡y=0µÃµ½Mµã×ø±ê£¬ÓÉÁ½µãÇóбÂʵõ½AMµÄбÂÊ£¬ÓÉÁ½Ö±ÏßбÂʵĹØÏµµÃµ½¦ËµÄÖµ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâÖª£¬e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2-b2=c2£¬
Ôòa2=4b2£®
ÔòÍÖÔ²CµÄ·½³Ì¿É»¯Îªx2+4y2=a2£®
½«y=x´úÈë¿ÉµÃx=¡À$\frac{\sqrt{5}}{5}$a£¬
Òò´Ë$\sqrt{2}$•$\frac{2\sqrt{5}}{5}$a=$\frac{4\sqrt{10}}{5}$£¬½âµÃa=2£¬Ôòb=1£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¨x1y1¡Ù0£©£¬D£¨x2£¬y2£©£¬
ÔòB£¨-x1£¬-y1£©£®
¡ßÖ±ÏßABµÄбÂÊkAB=$\frac{{y}_{1}}{{x}_{1}}$£¬
ÓÖAB¡ÍAD£¬
¡àÖ±ÏßADµÄбÂÊkAD=-$\frac{{x}_{1}}{{y}_{1}}$£®
ÉèAD·½³ÌΪy=kx+m£¬
ÓÉÌâÒâÖªk¡Ù0£¬m¡Ù0£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£®
¡àx1+x2=-$\frac{8km}{1+4{k}^{2}}$£®
Òò´Ëy1+y2=k£¨x1+x2£©+2m=$\frac{2m}{1+4{k}^{2}}$£®
ÓÉÌâÒâ¿ÉµÃk1=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$=-$\frac{1}{4k}$=$\frac{{y}_{1}}{4{x}_{1}}$£®
¡àÖ±ÏßBDµÄ·½³ÌΪy+y1=$\frac{{y}_{1}}{4{x}_{1}}$£¨x+x1£©£®
Áîy=0£¬µÃx=3x1£¬¼´M£¨3x1£¬0£©£®
¿ÉµÃk2=-$\frac{{y}_{1}}{2{x}_{1}}$£®
¡àk1=-$\frac{1}{2}$k2£¬¼´¦Ë=-$\frac{1}{2}$£®
Òò´Ë´æÔÚ³£Êý¦Ë=-$\frac{1}{2}$ʹµÃ½áÂÛ³ÉÁ¢£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö÷Òª¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Óã¬Ö±ÏßÓëÇúÏßÁªÁ¢£¬¸ù¾Ý·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ½âÌ⣬ÊÇ´¦ÀíÕâÀàÎÊÌâµÄ×îΪ³£Óõķ½·¨£¬µ«Ô²×¶ÇúÏßµÄÌØµãÊǼÆËãÁ¿±È½Ï´ó£¬ÒªÇó¿¼ÊԾ߱¸½ÏÇ¿µÄÔËËãÍÆÀíµÄÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -1 | B£® | 0 | C£® | 1 | D£® | -1»ò1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| X | 11 | 10.5 | 10 | 9.5 | 9 |
| y | 5 | 6 | 8 | 10 | 11 |
| A£® | 23¸ö | B£® | 24¸ö | C£® | 25¸ö | D£® | 26¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 10 | B£® | 11 | C£® | 12 | D£® | 27 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x2-y2=1 | B£® | $\frac{{x}^{2}}{2}$-y2=1 | C£® | x2-$\frac{{y}^{2}}{2}$=1 | D£® | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com