18£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬Ö±Ïßy=x±»ÍÖÔ²C½ØµÃµÄÏ߶γ¤Îª$\frac{{4\sqrt{10}}}{5}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýÔ­µãµÄÖ±ÏßÓëÍÖÔ²C½»ÓÚÁ½µã£¨A£¬B²»ÊÇÍÖÔ²CµÄ¶¥µã£©£¬µãDÔÚÍÖÔ²CÉÏ£¬ÇÒAD¡ÍAB£¬Ö±ÏßBDÓëxÖá¡¢yÖá·Ö±ð½»ÓÚM£¬NÁ½µã£®ÉèÖ±ÏßBD£¬AMбÂÊ·Ö±ðΪk1£¬k2£¬Ö¤Ã÷´æÔÚ³£Êý¦ËʹµÃk1=¦Ëk2£¬²¢Çó³ö¦ËµÄÖµ£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²ÀëÐÄÂʵõ½a£¬bµÄ¹ØÏµ£¬»¯¼òÍÖÔ²·½³Ì£¬ºÍÖ±Ïß·½³ÌÁªÁ¢ºóÇó³ö½»µãµÄºá×ø±ê£¬°ÑÏÒ³¤Óý»µãºá×ø±ê±íʾ£¬ÔòaµÄÖµ¿ÉÇ󣬽øÒ»²½µÃµ½bµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©Éè³öA£¬DµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¨x1y1¡Ù0£©£¬£¨x2£¬y2£©£¬ÓÃAµÄ×ø±ê±íʾBµÄ×ø±ê£¬°ÑABºÍADµÄбÂʶ¼ÓÃAµÄ×ø±ê±íʾ£¬Ð´³öÖ±ÏßADµÄ·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢ºóÀûÓøùÓëϵÊý¹ØÏµµÃµ½ADºá×Ý×ø±êµÄºÍ£¬Çó³öADÖеã×ø±ê£¬ÔòBDбÂÊ¿ÉÇó£¬ÔÙд³öBDËùÔÚÖ±Ïß·½³Ì£¬È¡y=0µÃµ½Mµã×ø±ê£¬ÓÉÁ½µãÇóбÂʵõ½AMµÄбÂÊ£¬ÓÉÁ½Ö±ÏßбÂʵĹØÏµµÃµ½¦ËµÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâÖª£¬e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2-b2=c2£¬
Ôòa2=4b2£®
ÔòÍÖÔ²CµÄ·½³Ì¿É»¯Îªx2+4y2=a2£®
½«y=x´úÈë¿ÉµÃx=¡À$\frac{\sqrt{5}}{5}$a£¬
Òò´Ë$\sqrt{2}$•$\frac{2\sqrt{5}}{5}$a=$\frac{4\sqrt{10}}{5}$£¬½âµÃa=2£¬Ôòb=1£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¨x1y1¡Ù0£©£¬D£¨x2£¬y2£©£¬
ÔòB£¨-x1£¬-y1£©£®
¡ßÖ±ÏßABµÄбÂÊkAB=$\frac{{y}_{1}}{{x}_{1}}$£¬
ÓÖAB¡ÍAD£¬
¡àÖ±ÏßADµÄбÂÊkAD=-$\frac{{x}_{1}}{{y}_{1}}$£®
ÉèAD·½³ÌΪy=kx+m£¬
ÓÉÌâÒâÖªk¡Ù0£¬m¡Ù0£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£®
¡àx1+x2=-$\frac{8km}{1+4{k}^{2}}$£®
Òò´Ëy1+y2=k£¨x1+x2£©+2m=$\frac{2m}{1+4{k}^{2}}$£®
ÓÉÌâÒâ¿ÉµÃk1=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$=-$\frac{1}{4k}$=$\frac{{y}_{1}}{4{x}_{1}}$£®
¡àÖ±ÏßBDµÄ·½³ÌΪy+y1=$\frac{{y}_{1}}{4{x}_{1}}$£¨x+x1£©£®
Áîy=0£¬µÃx=3x1£¬¼´M£¨3x1£¬0£©£®
¿ÉµÃk2=-$\frac{{y}_{1}}{2{x}_{1}}$£®
¡àk1=-$\frac{1}{2}$k2£¬¼´¦Ë=-$\frac{1}{2}$£®
Òò´Ë´æÔÚ³£Êý¦Ë=-$\frac{1}{2}$ʹµÃ½áÂÛ³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö÷Òª¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Óã¬Ö±ÏßÓëÇúÏßÁªÁ¢£¬¸ù¾Ý·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ½âÌ⣬ÊÇ´¦ÀíÕâÀàÎÊÌâµÄ×îΪ³£Óõķ½·¨£¬µ«Ô²×¶ÇúÏßµÄÌØµãÊǼÆËãÁ¿±È½Ï´ó£¬ÒªÇó¿¼ÊԾ߱¸½ÏÇ¿µÄÔËËãÍÆÀíµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬¾ØÐÎABCDÖУ¬BC=2£¬AB=1£¬PA¡ÍÆ½ÃæABCD£¬BE¡ÎPA£¬BE=$\frac{1}{2}$PA£¬FΪPAµÄÖе㣮
£¨1£©ÇóÖ¤£ºPC¡ÎÆ½ÃæBDF£®
£¨2£©¼ÇËÄÀâ×¶C-PABEµÄÌå»ýΪV1£¬ÈýÀâ×¶P-ACDµÄÌå»ýΪV2£¬Çó$\frac{V_1}{V_2}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èôº¯Êýf£¨x£©=ln£¨x+$\sqrt{a+{x}^{2}}$£©ÎªÆæº¯Êý£¬Ôòa=£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®-1»ò1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ä³²úÆ·ÔÚijÁãÊÛ̯λµÄÁãÊÛ¼Ûx£¨µ¥Î»£ºÔª£©ÓëÿÌìµÄÏúÊÛÁ¿y£¨µ¥Î»£º¸ö£©µÄͳ¼Æ×ÊÁÏÈç±íËùʾ£º
X1110.5109.59
y5681011
Óɴ˱í¿ÉµÃ»Ø¹éÖ±Ïß·½³Ì$\widehat{y}$=-3.2x+$\widehat{a}$£¬¾Ý´ËÄ£ÐÍÔ¤²âÁãÊÛ¼ÛΪ5Ԫʱ£¬Ã¿ÌìµÄÏúÊÛÁ¿Îª£¨¡¡¡¡£©
A£®23¸öB£®24¸öC£®25¸öD£®26¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¹ØÓÚxµÄ·½³Ìx3-x2-x+m=0£¬ÖÁÉÙÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÔòmµÄ×îСֵΪ$-\frac{5}{27}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Éè±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ£º$\left\{\begin{array}{l}x+y-3¡Ý0\\ x-y+1¡Ý0\\ 2x-y-3¡Ü0\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=2x+3y+4µÄ×îСֵΪ£¨¡¡¡¡£©
A£®10B£®11C£®12D£®27

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈôË«ÇúÏߵĶ¥µãºÍ½¹µã·Ö±ðΪÍÖÔ²$\frac{{x}^{2}}{2}$+y2=1µÄ½¹µãºÍ¶¥µã£¬Ôò¸ÃË«ÇúÏß·½³ÌΪ£¨¡¡¡¡£©
A£®x2-y2=1B£®$\frac{{x}^{2}}{2}$-y2=1C£®x2-$\frac{{y}^{2}}{2}$=1D£®$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èô¼¯ºÏA={x||x-3|£¼2}£¬¼¯ºÏB={x|$\frac{x-4}{x}¡Ý0$}£¬ÔòA¡ÉB=[4£¬5£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®${£¨{1+x+\frac{1}{x}}£©^6}$µÄÕ¹¿ªÊ½Öг£ÊýÏîΪ141£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸