分析 作出图形,由正三棱柱的性质可知外接球的球心为棱柱上下底面中心连线的中点,利用勾股定理求出球的半径,得出球的体积.
解答 解:取三棱柱ABC-A′B′C′的两底面中心O,O′,连结OO′,取OO′的中点D,连结BD![]()
则BD为三棱柱外接球的半径.
∵△ABC是边长为2的正三角形,O是△ABC的中心,
∴BO=$\frac{2\sqrt{3}}{3}$.
又∵OD=1,
∴BD=$\frac{\sqrt{21}}{3}$.
∴三棱柱外接球的体积V=$\frac{4}{3}$π×BD3=$\frac{{28\sqrt{21}}}{27}π$.
故答案为$\frac{{28\sqrt{21}}}{27}π$.
点评 本题考查了多面体与外接球的关系,球的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{3}$个单位 | B. | 向右平移$\frac{π}{3}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源:2015-2016学年河南省商丘市高一理下学期期末考数学试卷(解析版) 题型:填空题
抛掷一均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过3”,则P(A∪B)=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com