精英家教网 > 高中数学 > 题目详情
2.现有2门不同的考试要安排在连续的5天之内进行,每天最多考一门,且不能连续两天有考试,则不同的安排方案有(  )
A.6种B.8种C.12种D.16种

分析 若第一门安排在开头或结尾,则第二门有3种安排方法.若第一门安排在中间的3天中,则第二门有2种安排方法,根据分步计数原理分别求出安排方案种数,相加即得所求.

解答 解:若第一门安排在开头或结尾,则第二门有3种安排方法,这时,共有${C}_{2}^{1}×$3=6种方法.
若第一门安排在中间的3天中,则第二门有2种安排方法,这时,共有3×2=6种方法.
综上可得,所有的不同的考试安排方案种数有6+6=12种,
故选C.

点评 本题考查排列、组合及简单计数问题,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=e2x-aex+2x在R上是增函数,则实数a的取值范围是(  )
A.(2,4]B.(-∞,4]C.(3,4)D.[3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“若a>b,则a+c>b+c”的否命题是(  )
A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|2x+1|-|2x-2|
(1)解不等式f(x)≥0;
(2)若f(x)≤a-2对任意实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在直角坐标系中,如果不同两点A(a,b),B(-a,-b)都在函数y=h(x)的图象上,那么称[A,B]为函数h(x)的一组“友好点”([A,B]与[B,A]看作一组).已知定义在[0,+∞)上的函数f(x)满足f(x+2)=$\sqrt{2}$f(x),且当x∈[0,2]时,f(x)=sin$\frac{π}{2}$x.则函数g(x)=$\left\{\begin{array}{l}{f(x),0<x≤8}\\{-\sqrt{-x},-8≤x<0}\end{array}\right.$的“友好点”的组数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某高校组织自主招生考试,共有2 000名学生报名参加了笔试,成绩均介于195分到275分 之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组[195,205),第二组[205,215),…,第八组[265,275].如图是按上述分组方法得到的频率分布直方图,已知笔试成绩在260分以上(含260分)的同学取得面试资格.
(Ⅰ)估计所有参加笔试的2000名学生中,取得面试资格的学生人数;
(Ⅱ)面试时,每位考生抽取三个问题(每人在 回答三个问题时对每一个问题正确回答的概率均为$\frac{1}{2}$).若三个问题全答错,则不能取得该校的自主招生资格;若三个问题均回答正确且笔试成绩在270分以上,则 获A类资格(不参加高考,直接录取);其它情况下获B类资格(参加高考,降分录取),武估计获得A类资格和B类资格的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是一个三棱柱的正视图和俯视图,其俯视图是面积为8$\sqrt{2}$的矩形,则该三棱柱的体积是(  )
A.8B.4$\sqrt{2}$C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-2+t}\\{y=-2t}\end{array}\right.$(t为参数),圆C的普通方程为x2+y2-2y=0,以O为极点,x轴的正半轴为极轴,建立极坐标系.
(1)求直线l的极坐标方程;
(2)设M(ρ,θ)(ρ≥0,0≤θ<2π)为直线l上一动点,MA切圆C于点A,求|MA|的最小值,及此时点M的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.${(\sqrt{x}+\frac{3}{x})}^{n}$的展开式中,各项系数之和为A,各项的二项式系数之和为B,若$\frac{A}{B}$=32,则n=(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案