精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=e2x-aex+2x在R上是增函数,则实数a的取值范围是(  )
A.(2,4]B.(-∞,4]C.(3,4)D.[3,4)

分析 根据题意,若函数f(x)在R上是增函数,则必有其导数f′(x)≥0在R上恒成立,使用换元法设ex=t,将问题转化为二次函数根的分布问题,求出a的取值范围,即可得答案.

解答 解:根据题意,对于函数f(x)=e2x-aex+2x,求导可得:f′(x)=2e2x-aex+2,
∵f(x)是R上的增函数,
∴f′(x))=2e2x-aex+2≥0在R上恒成立,
设ex=t,则t>0,
∴2t2-at+2≥0在(0,+∞)上恒成立,
(1)若△=a2-16≤0,解得-4≤a≤4.显然符合题意.
(2)若△=a2-16>0,即a<-4或a>4时,只需令2t2-at+2=0有两个负根即可.
则有$\frac{a}{2}$<0,即a<0;
又由a<-4或a>4,则此时a<-4;
综合可得:a<4,即a的取值范围是(-∞,4];
故选:B.

点评 本题考查利用导数判断函数单调性,涉及二次函数的性质,关键是用换元法分析,将原问题转化为二次函数的根的分布问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在四边形ABCD中,∠A=90°,∠B=60°,∠D=120°,对角线AC长为4,则对角线BD的长为$\frac{8\sqrt{3}}{3}$,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{1-x}{1+x}$.
(1)求证:$f({\frac{1}{x}})=-f(x)$.(x≠-1,x≠0)
(2)说明f(x)的图象可以由函数$y=\frac{2}{x}$的图象经过怎样的变换得到?
(3)当x∈Z时,m≤f(x)≤M恒成立,求M-m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数y=|x|•(x-4),试完成以下问题:
(Ⅰ)在如图所示平面直角坐标系中画出该函数的图象;
(Ⅱ)利用图象直接回答:当方程|x|(x-4)=k分别有一解、两解、三解时,k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf'(x)-f(x)>0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(-1,0)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简求值:
(1)$\sqrt{6\frac{1}{4}}+\sqrt{3\frac{3}{8}}+\sqrt{0.0625}{+(\sqrt{π})}^{0}{-2}^{-1}$
(2)lg14-2lg$\frac{7}{3}$+lg7-lg18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-a(x-1),a∈R.
(Ⅰ)求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)当x≥1时,f(x)≤$\frac{lnx}{x+1}$恒成立,求a的取值范围;
(Ⅲ)当x≥1时,求证:不等式ex-1-a(x2-x)≥xf(x)+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴,并在两坐标系中取相同的长度单位,若直线l的极坐标方程是ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$,且点P是曲线C:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)上的一个动点.
(Ⅰ)将直线l的方程化为直角坐标方程;
(Ⅱ)求点P到直线l的距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.现有2门不同的考试要安排在连续的5天之内进行,每天最多考一门,且不能连续两天有考试,则不同的安排方案有(  )
A.6种B.8种C.12种D.16种

查看答案和解析>>

同步练习册答案