精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=lnx-a(x-1),a∈R.
(Ⅰ)求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)当x≥1时,f(x)≤$\frac{lnx}{x+1}$恒成立,求a的取值范围;
(Ⅲ)当x≥1时,求证:不等式ex-1-a(x2-x)≥xf(x)+1.

分析 (Ⅰ)根据导数的几何意义即可求出答案
(Ⅱ)f(x)-$\frac{lnx}{x+1}$=f(x)-$\frac{lnx}{x+1}$=$\frac{xlnx-a({x}^{2}-1)}{x+1}$,令g(x)=xlnx-a(x2-1),(x≥1),g′(x)=lnx+1-2ax,令F(x)=g′(x)=lnx+1-2ax,F′(x)=$\frac{1-2ax}{x}$,由此进行分类讨论,能求出实数a的取值范围.
(Ⅲ)原不等式等价于ex-1≥xlnx+1,设φ(x)=ex-1-xlnx-1,x≥1,利用导数求出函数的最小值大于等于0即可

解答 解:(Ⅰ)∵x>0,f′(x)=$\frac{1}{x}$-a,
∴f′(1)=1-a,f(1)=0,
∴切点是(1,0),
∴切线方程为y=(1-a)(x-1),
(Ⅱ)f(x)-$\frac{lnx}{x+1}$=$\frac{xlnx-a({x}^{2}-1)}{x+1}$,
令g(x)=xlnx-a(x2-1),(x≥1),
g′(x)=lnx+1-2ax,令F(x)=g′(x)=lnx+1-2ax,
∴F′(x)=$\frac{1-2ax}{x}$,
①若a≤0,F′(x)>0,g′(x)在[1,+∞)上递增,
g′(x)≥g′(1)=1-2a>0,
∴g(x)在[1,+∞)上递增,g(x)≥g(1)=0,
从而f(x)-$\frac{lnx}{x+1}$不符合题意.
②若0<a<$\frac{1}{2}$,当x∈(1,$\frac{1}{2a}$),F′(x)>0,
∴g′(x)在(1,$\frac{1}{2a}$)上递增,
从而g′(x)>g′(1)=1-2a,
∴g(x)在[1,+∞)上递增,g(x)≥g(1)=0,
从而f(x)-$\frac{lnx}{x+1}$不符合题意.
③若a≥$\frac{1}{2}$,F′(x)≤0在[1,+∞)上恒成立,
∴g′(x)在[1,+∞)上递减,g′(x)≤g′(1)=1-2a≤0,
从而g(x)在[1,+∞)上递减,
∴g(x)≤g(1)=0,f(x)-$\frac{lnx}{x+1}$≤0,
综上所述,a的取值范围是[$\frac{1}{2}$,+∞).
(Ⅲ)不等式ex-1-a(x2-x)≥xf(x)+1等价于ex-1-a(x2-x)≥xlnx-a(x2-x)+1,等价于ex-1≥xlnx+1,
设φ(x)=ex-1-xlnx-1,x≥1,
∴φ′(x)=ex-1-(1+lnx),x≥1,
再设m(x)=ex-1-(1+lnx),
∴m′(x)=ex-1-$\frac{1}{x}$≥0恒成立,
∴m(x)在[1,+∞)上单调递增,
∴m(x)min=m(1)=1-1=0,
∴φ′(x)≥0,在[1,+∞)上恒成立,
∴φ(x)在[1,+∞)上单调递增,
∴φ(x)min=φ(1)=1-0-1=0,
故ex-1≥xlnx+1,
故当x≥1时,不等式ex-1-a(x2-x)≥xf(x)+1成立

点评 本题考查函数的单调性的求法,考查满足条件的实数的取值范围的求法.综合性强,难度大,有一定的探索性,对数学思维的要求较高,解题时要注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数y=3cos(x+100)+5sin(x+40°)的最大值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算${({\frac{9}{4}})^{\frac{1}{2}}}×{({\frac{27}{8}})^{-\frac{1}{3}}}-{(lg2)^2}-{(lg5)^2}-2lg2\;•\;lg5$的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=e2x-aex+2x在R上是增函数,则实数a的取值范围是(  )
A.(2,4]B.(-∞,4]C.(3,4)D.[3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U={x∈N+|-2<x<9},M=(3,4,5),P={1,3,6},那么{2,7,8}是(  )
A.M∪PB.M∩PC.(∁UM)∪(∁P)D.(∁UM)∩(∁UP)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设复平面上点Z1,Z2,…,Zn,…分别对应复数z1,z2,…,zn,…;
(1)设z=r(cosα+isinα),(r>0,α∈R),用数学归纳法证明:zn=rn(cosnα+isinnα),n∈Z+
(2)已知${z_1}={(\frac{1+i}{1-i})^{20}}$,且$\frac{{{z_{n+1}}}}{z_n}=\frac{1}{2}$(cosα+isinα)(α为实常数),求出数列{zn}的通项公式;
(3)在(2)的条件下,求$L=|{\overrightarrow{{Z_1}{Z_2}}}|+|{\overrightarrow{{Z_2}{Z_3}}}|+…+|{\overrightarrow{{Z_n}{Z_{n+1}}}}$|+….

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xoy,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=acost+\sqrt{3}}\\{y=asint}\end{array}}\right.$(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线${C_2}:{ρ^2}=2ρsinθ+6$.
(1)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(2)已知C1与C2的交于A,B两点,且AB过极点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“若a>b,则a+c>b+c”的否命题是(  )
A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是一个三棱柱的正视图和俯视图,其俯视图是面积为8$\sqrt{2}$的矩形,则该三棱柱的体积是(  )
A.8B.4$\sqrt{2}$C.16D.$\frac{16}{3}$

查看答案和解析>>

同步练习册答案