精英家教网 > 高中数学 > 题目详情
17.化简求值:
(1)$\sqrt{6\frac{1}{4}}+\sqrt{3\frac{3}{8}}+\sqrt{0.0625}{+(\sqrt{π})}^{0}{-2}^{-1}$
(2)lg14-2lg$\frac{7}{3}$+lg7-lg18.

分析 (1)利用指数的运算法则即可得出.
(2)利用对数的运算法则即可得出.

解答 解:(1)原式=$\frac{5}{2}+\frac{3\sqrt{6}}{4}$+0.25+1-$\frac{1}{2}$=$\frac{13+3\sqrt{6}}{4}$.
(2)原式=$lg\frac{14×7}{(\frac{7}{3})^{2}×18}$=lg1=0.

点评 本题考查了指数与对数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若关于x的方程2cos2x+5sinx-4=a有实数解,则实数a的取值范围是[-9,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)是定义在R上的偶函数,并且有$f(x+2)=\frac{1}{f(x)}$,当2≤x≤3时,f(x)=x,则f(105.5)=2.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.依法纳税是每个公民应尽的义务,规定:公民全月工资、薪金所得不超过3500元的,免征个人所得税;超过3500元部分为全月应纳税所得额,此项税款按如表分段累计计算:
级数全月应纳税所得额x税率
1不超过1500元部分3%
2超过1500元至4500元部分10%
3超过4500元至9000元部分20%
(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;
(2)某人一月份应交纳此项税款303元,那么他当月的工资、薪金所得是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=e2x-aex+2x在R上是增函数,则实数a的取值范围是(  )
A.(2,4]B.(-∞,4]C.(3,4)D.[3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是(  )
A.若m⊥α,m∥n,n∥β,则 α⊥βB.若α∥β,m?α,n?β,则 m∥n
C.若m⊥n,m?α,n?β,则α⊥βD.若α⊥β,m?α,n?β,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设复平面上点Z1,Z2,…,Zn,…分别对应复数z1,z2,…,zn,…;
(1)设z=r(cosα+isinα),(r>0,α∈R),用数学归纳法证明:zn=rn(cosnα+isinnα),n∈Z+
(2)已知${z_1}={(\frac{1+i}{1-i})^{20}}$,且$\frac{{{z_{n+1}}}}{z_n}=\frac{1}{2}$(cosα+isinα)(α为实常数),求出数列{zn}的通项公式;
(3)在(2)的条件下,求$L=|{\overrightarrow{{Z_1}{Z_2}}}|+|{\overrightarrow{{Z_2}{Z_3}}}|+…+|{\overrightarrow{{Z_n}{Z_{n+1}}}}$|+….

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.三棱柱ABC-A1B1C1的侧棱垂直于底面,且AB⊥BC,AB=BC=AA1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为(  )
A.48πB.32πC.12πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某高校组织自主招生考试,共有2 000名学生报名参加了笔试,成绩均介于195分到275分 之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组[195,205),第二组[205,215),…,第八组[265,275].如图是按上述分组方法得到的频率分布直方图,已知笔试成绩在260分以上(含260分)的同学取得面试资格.
(Ⅰ)估计所有参加笔试的2000名学生中,取得面试资格的学生人数;
(Ⅱ)面试时,每位考生抽取三个问题(每人在 回答三个问题时对每一个问题正确回答的概率均为$\frac{1}{2}$).若三个问题全答错,则不能取得该校的自主招生资格;若三个问题均回答正确且笔试成绩在270分以上,则 获A类资格(不参加高考,直接录取);其它情况下获B类资格(参加高考,降分录取),武估计获得A类资格和B类资格的人数.

查看答案和解析>>

同步练习册答案