精英家教网 > 高中数学 > 题目详情
14.已知在等比数列{an}中,a1a3=36,a2+a4=60,Sn>400,则n的取值范围是n≥8,且n为偶数.

分析 由等比数列的性质可得,a1a3=a22=36,a2(1+q2)=60,从而可求公比q,然后把q得值代入到Sn>400进行求解.

解答 解:由等比数列的性质可得,a1a3=a22=36,a2(1+q2)=60,a2>0,a2=6,1+q2=10,q=±3,
当q=3时,a1=2,Sn=$\frac{2(1-{3}^{n})}{1-3}$>400,3n>401,∴n≥6;
当q=-3时,a1=-2,Sn=$\frac{-2[1-(-3)^{n}]}{1-(-3)}$>400,(-3)n>801,∴n≥8,n为偶数;
∴n≥8,且n为偶数.
故答案为n≥8,且n为偶数.

点评 本题主要考查了等比数列的性质的应用,属于基本公式的应用,属于基础试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=alnx-bx2
(1)当b=1时,讨论函数f(x)的单调性;   
(2)当a=1,b=0时,函数g(x)=f(x)-kx,k为常数,若函数g(x)有两个相异零点x1,x2,证明:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x2-3x-10<0,x∈N*},B={2x<16},则A∩B=(  )
A.{-1,0,1,2,3}B.{1,2,3,4}C.{1,2,3}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α、β∈(0,π),且tanα、tanβ是方程x2-5x+6=0的两根,试求:
(1)α+β的值;
(2)tan2(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,2sinA=acosB,b=$\sqrt{5}$.
(1)若c=2,求sinC;
(2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)的离心率为$\sqrt{3}$,虚轴端点与焦点的距离为$\sqrt{5}$.
(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某兴趣小组有男生20人,女生10人,从中抽取一个容量为5的样本,恰好抽到2名男生和3名女生,则
①该抽样可能是系统抽样;
②该抽样可能是随机抽样:
③该抽样一定不是分层抽样;
④本次抽样中每个人被抽到的概率都是$\frac{1}{5}$.
其中说法正确的为(  )
A.①②③B.②③C.②③④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C的中心在原点,焦点在y轴上,若双曲线C的一条渐近线与直线$\sqrt{3}x+y-4=0$平行,则双曲线C的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.等差数列{an}中,a3+a4=12,S7=49.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.令bn=[lgan],求数列{bn}的前2000项和.

查看答案和解析>>

同步练习册答案