精英家教网 > 高中数学 > 题目详情
16.已知点A(2,1),抛物线y2=4x的焦点F,P是抛物线上的一动点则|PA|+|PF|的最小值为(  )
A.1B.2C.3D.4

分析 利用抛物线的定义,将点P到其焦点的距离转化为它到其准线的距离即可.

解答 解:根据题意,作图如右.
设点P在其准线x=-1上的射影为M,有抛物线的定义得:|PF|=|PM|
∴欲使|PA|+|PF|取得最小值,就是使|PA|+|PM|最小,
∵|PA|+|PM|≥|AM|(当且仅当M,P,A三点共线时取“=”),
∴|PA|+|PF|取得最小值时(M,P,A三点共线时),
点P的纵坐标y0=1,设其横坐标为x0
∵P(x0,1)为抛物线y2=4x上的点,
∴x0=$\frac{1}{4}$,
则有当P为($\frac{1}{4}$,1)时,|PA|+|PF|取得最小值,为3.
故选C.

点评 本题考查抛物线的定义和简单性质,将点P到其焦点的距离转化为它到其准线的距离是关键,考查转化思想的灵活应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{3x+2}{x+a}$(x≠-a,a≠$\frac{2}{3}$)
(1)求反函数f-1(x);
(2)求使得f(x)=f-1(x)的a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点P是抛物线y2=6x上的动点,F是抛物线的焦点,A($\frac{7}{2}$,2$\sqrt{3}$)为定点,则|PA|+|PF|的最小值是5,取得最小值时点P的坐标是(2,2$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线y=x2上的点到直线y=2x-6的最短距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线y2=2px(p>0)的准线方程为x=-1,斜率为1的直线过抛物线的焦点F,且与抛物线交于A、B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线y2=8x的焦点为F,直线y=k(x+2)与抛物线交于A,B两点,则直线FA与直线FB的斜率之和为(  )
A.0B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线y2=10x准线方程是(  )
A.x=-$\frac{5}{2}$B.x=-5C.y=-$\frac{5}{2}$D.y=-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.是否存在常数a,b使等式$\frac{1}{1•3}$+$\frac{1}{3•5}$+…$\frac{1}{(2n-1)(2n+1)}$=$\frac{n}{an+b}$对一切正整数n都成立?如存在,求出a,b的值;如不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}+cosθ}\\{y=\frac{\sqrt{2}}{2}+sinθ}\end{array}\right.$(θ是参数),直线l的极坐标方程为$θ=\frac{π}{12}$(ρ∈R)
(Ⅰ)求C的普通方程与极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|的值.

查看答案和解析>>

同步练习册答案