精英家教网 > 高中数学 > 题目详情
2.$\overrightarrow a=(-2,1),\overrightarrow b=(tanα,-1),且\overrightarrow a∥\overrightarrow b,则\frac{sinα+cosα}{sinα-cosα}$=3.

分析 根据向量垂直坐标运算关系建立等式,即可求解.

解答 解:由题意,$\overrightarrow{a}∥\overrightarrow{b}$,
∴tanα=2,
则$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=$\frac{2+1}{2-1}$=3.
故答案为:3.

点评 本题考查了“弦化切”及同角三角函数基本关系式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若直线l1:(a+2)x+(a-1)y+8=0与直线l2:(a-3)x+(a+2)y-7=0垂直,那么a的值为±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.甲乙两人进行抛硬币游戏,规定:每次抛币后,正面向上甲赢,否则乙赢.此时两人正在游戏,切知甲再赢m(常数m>1)次就获胜,而乙要再赢n(常数n>m)次才获胜,其中一人获胜游戏就结束.设再进行ξ次抛币,游戏结束.
(1)若m=2,n=3,求ξ的分布列及数学期望;
(2)若n=m+2写出概率P(ξ=m+k)(k=2,3,…,m+1)的表达式(不必写出过程).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{1}{2}{x^2}-x+alnx,a∈R$.
(Ⅰ)若a=-2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当$0<a<\frac{2}{9}$,函数f(x)的两个极值点为x1,x2,且x1<x2,求证:$\frac{{f({x_1})}}{x_2}>-\frac{5}{12}-\frac{1}{3}ln3$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=x+$\frac{1}{3}$e2x+aex在(-∞,+∞)单调递增,则a的取值范围是(  )
A.$[-\frac{{2\sqrt{6}}}{3},+∞)$B.$[\frac{{2\sqrt{6}}}{3},+∞)$C.$[-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}]$D.$(-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=2sin(2x+$\frac{π}{4}$)的对称轴是x=$\frac{π}{8}$+$\frac{1}{2}$kπ,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=|x+2|+|x-a|的图象关于直线x=1对称,则a的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知正方体ABCD-A${\;}_{{1}_{\;}}$B1C1D1,BD,BC1,B1D1,A1C1分别为各个面的对角线;
(1)求证:A1C1⊥平面BB1D1D;
(2)求异面直线B1D1与BC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,四棱锥P-ABCD的底面积ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=$\sqrt{3}$
(1)证明:平面PBE⊥平面PAB;
(2)过PC中点FFH∥平面PBD,FH交平面ABCD于H点,判定H点位于平面ABCD的那个具体位置?(至少写出两个位置,无须证明)
(3)求二面角A-BE-P的大小.

查看答案和解析>>

同步练习册答案