精英家教网 > 高中数学 > 题目详情
17.若函数f(x)=x+$\frac{1}{3}$e2x+aex在(-∞,+∞)单调递增,则a的取值范围是(  )
A.$[-\frac{{2\sqrt{6}}}{3},+∞)$B.$[\frac{{2\sqrt{6}}}{3},+∞)$C.$[-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}]$D.$(-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3})$

分析 f′(x)=1+$\frac{2}{3}{e}^{2x}+a{e}^{x}$,令ex=t,t>0,要使函数f(x)=x+$\frac{1}{3}$e2x+aex在(-∞,+∞)单调递增,只需$\frac{2}{3}{t}^{2}+at+1≥0$在t∈(0,+∞)上恒成立,即a≥-($\frac{2}{3}t+\frac{1}{t})$在t∈(0,+∞)上恒成立即可,

解答 解:f′(x)=1+$\frac{2}{3}{e}^{2x}+a{e}^{x}$
令ex=t,t>0,
要使函数f(x)=x+$\frac{1}{3}$e2x+aex在(-∞,+∞)单调递增,只需$\frac{2}{3}{t}^{2}+at+1≥0$在t∈(0,+∞)上恒成立
即a≥-($\frac{2}{3}t+\frac{1}{t})$在t∈(0,+∞)上恒成立,
∵$\frac{2}{3}t+\frac{1}{t}≥\frac{2\sqrt{6}}{3}$,∴a$≥-\frac{2\sqrt{6}}{3}$
故选:A

点评 本题考查了导数与函数的单调性的关系,考查了恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.四棱锥S-ABCD的底面ABCD是正方形,各侧棱长与底面的边长均相等,M为SA的中点,则直线BM与SC所成的角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足x2+y2+xy-4=0,则x3-y3的取值范围为[-16,16].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出下列命题:
①存在实数x,使sinx+cosx=$\frac{3}{2}$;      
②函数y=sin($\frac{2}{3}$x+$\frac{π}{2}$)是偶函数;
③若α,β是第一象限角,且α>β,则cosα<cosβ;
④函数y=sin2x的图象向左平移$\frac{π}{4}$个单位,得到函数y=sin(2x+$\frac{π}{4}$)的图象.
其中结论正确的序号是②.(把正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x、y满足约束条件$\left\{{\begin{array}{l}{2x+3y-3≥0}\\{x-y+1≥0}\\{x-1≤0}\end{array}}\right.$,则z=x+2y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\overrightarrow a=(-2,1),\overrightarrow b=(tanα,-1),且\overrightarrow a∥\overrightarrow b,则\frac{sinα+cosα}{sinα-cosα}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=(log2x)2-2alog2x-3(a∈R).
(1)当a=-1时,解不等式f(x)<0;
(2)若x∈[2,8],求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若圆(x-1)2+(y+1)2=r2上有且只有两个点到直线x-y=1的距离等于$\frac{{\sqrt{2}}}{2}$则半径r的取值范围是(  )
A.$(0,\sqrt{2}]$B.$(0,\sqrt{2})$C.$[0,\sqrt{2})$D.$[0,\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式(2-x)(2x+1)>0的解集为$({-\frac{1}{2},2})$.

查看答案和解析>>

同步练习册答案