精英家教网 > 高中数学 > 题目详情
12.若直线l1:(a+2)x+(a-1)y+8=0与直线l2:(a-3)x+(a+2)y-7=0垂直,那么a的值为±2.

分析 对a分类讨论,利用两条直线相互垂直的充要条件即可得出.

解答 解:a=1时,两条直线分别化为:3x+8=0,-2x+3y-7=0,此时两条直线不垂直,舍去.
a=-2时,两条直线分别化为:-3x+8=0,-5x-7=0,此时两条直线垂直,因此a=-2满足条件.
a≠-2,1时,由-$\frac{a+2}{a-1}$×$(-\frac{a-3}{a+2})$=-1,化为:a=2.满足条件.
综上可得:a=±2.
故答案为:±2.

点评 本题考查了两条直线相互垂直的充要条件、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.由曲线y=$\sqrt{2x}$,直线y=x-4及y轴所围成的封闭图形的面积为(  )
A.$\frac{40}{3}$B.$\frac{64}{3}$C.16$\sqrt{2}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设点A(x,y)在区域$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$上,点B(y,-x),设向量$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,则点C构成的几何图形的面积是(  )
A.3B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x∈($\frac{1}{e}$,1),设a=lnx,$b={2^{ln\frac{1}{x}}}$,c=elnx,把a,b,c从大到小排列为b>c>a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.四棱锥S-ABCD的底面ABCD是正方形,各侧棱长与底面的边长均相等,M为SA的中点,则直线BM与SC所成的角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数$\frac{2+i}{i}$(i是虚数单位)的虚部为(  )
A.-2iB.-2C.2D.2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)={(\frac{1}{3})^x}-{log_2}x$,正实数a、b、c成公差为正数的等差数列,且满足f(a)+f(b)+f(c)<0,若实数x0是函数f(x)的一个零点,那么下列不等式中不可能成立的是(  )
A.x0<aB.a<x0<bC.b<x0<cD.x0>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为($\frac{π}{3}$,$\sqrt{2}$),此点到相邻最低点间的曲线与x轴交于点($\frac{4π}{3}$,0),若φ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)求这条曲线的函数表达式;
(2)求此函数在[-2π,2π]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\overrightarrow a=(-2,1),\overrightarrow b=(tanα,-1),且\overrightarrow a∥\overrightarrow b,则\frac{sinα+cosα}{sinα-cosα}$=3.

查看答案和解析>>

同步练习册答案