精英家教网 > 高中数学 > 题目详情
13.甲乙两人进行抛硬币游戏,规定:每次抛币后,正面向上甲赢,否则乙赢.此时两人正在游戏,切知甲再赢m(常数m>1)次就获胜,而乙要再赢n(常数n>m)次才获胜,其中一人获胜游戏就结束.设再进行ξ次抛币,游戏结束.
(1)若m=2,n=3,求ξ的分布列及数学期望;
(2)若n=m+2写出概率P(ξ=m+k)(k=2,3,…,m+1)的表达式(不必写出过程).

分析 (1)讨论各种情况,利用相互独立事件的概率公式计算对应的概率,得出数学期望;
(2)根据组合数公式和概率公式得出概率表达式.

解答 解:(1)设事件A为:抛一次硬币,正面向上,事件B:抛一次硬币,反面向上,
则P(A)=P(B)=$\frac{1}{2}$,
∵m=2,n=3,∴ξ的可能取值为2,3,4,
且P(ξ=2)=[P(A)]2=$\frac{1}{4}$,P(ξ=3)=${C}_{2}^{1}•$[P(A)]P[(B)]P(A)+[P(B)]3=$\frac{3}{8}$,
P(ξ=4)=${C}_{3}^{1}$•P(A)•P(B)•P(B)•P(A)+${C}_{3}^{1}$•P(A)•[P(B)]3=$\frac{3}{8}$,
∴E(ξ)=2×$\frac{1}{4}$+3×$\frac{3}{8}$+4×$\frac{3}{8}$=$\frac{25}{8}$.
(2)P(ξ=m+k)=(${C}_{m+k-1}^{m-1}$+${C}_{m+k-1}^{m+1}$)($\frac{1}{2}$)m+k

点评 本题考查了离散型随机变量的分布列与概率计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设点A(x,y)在区域$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$上,点B(y,-x),设向量$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,则点C构成的几何图形的面积是(  )
A.3B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)={(\frac{1}{3})^x}-{log_2}x$,正实数a、b、c成公差为正数的等差数列,且满足f(a)+f(b)+f(c)<0,若实数x0是函数f(x)的一个零点,那么下列不等式中不可能成立的是(  )
A.x0<aB.a<x0<bC.b<x0<cD.x0>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为($\frac{π}{3}$,$\sqrt{2}$),此点到相邻最低点间的曲线与x轴交于点($\frac{4π}{3}$,0),若φ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)求这条曲线的函数表达式;
(2)求此函数在[-2π,2π]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足x2+y2+xy-4=0,则x3-y3的取值范围为[-16,16].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若两直线x+ay+3=0与3x+2y+a=0平行,则a=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出下列命题:
①存在实数x,使sinx+cosx=$\frac{3}{2}$;      
②函数y=sin($\frac{2}{3}$x+$\frac{π}{2}$)是偶函数;
③若α,β是第一象限角,且α>β,则cosα<cosβ;
④函数y=sin2x的图象向左平移$\frac{π}{4}$个单位,得到函数y=sin(2x+$\frac{π}{4}$)的图象.
其中结论正确的序号是②.(把正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\overrightarrow a=(-2,1),\overrightarrow b=(tanα,-1),且\overrightarrow a∥\overrightarrow b,则\frac{sinα+cosα}{sinα-cosα}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式$\frac{x-1}{2x+3}$<0的解集为(-$\frac{3}{2}$,1).

查看答案和解析>>

同步练习册答案