精英家教网 > 高中数学 > 题目详情
4.复数(1+2i)i的实部为-2.

分析 利用复数的运算法则化简为a+bi的形式,然后找出实部;注意i2=-1.

解答 解:(1+2i)i=i+2i2=-2+i,所以此复数的实部为-2;
故答案为:-2.

点评 本题考查了复数的运算以及复数的认识;注意i2=-1.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足:a1∈N*,a1≤36,且an+1=$\left\{\begin{array}{l}{2{a}_{n},}&{{a}_{n}≤18}\\{2{a}_{n}-36,}&{{a}_{n>18}}\end{array}\right.$(n=1,2,…),记集合M={an|n∈N*}.
(Ⅰ)若a1=6,写出集合M的所有元素;
(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;
(Ⅲ)求集合M的元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={1,2,3},B={2,3},则(  )
A.A=BB.A∩B=∅C.A$\stackrel{?}{≠}$BD.B$\stackrel{?}{≠}$A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\frac{{3{x^2}+ax}}{e^x}$(a∈R)
(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若tanα=$\frac{1}{3}$,tan(α+β)=$\frac{1}{2}$,则tanβ=(  )
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{5}{7}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}满足a3=2,前3项和S3=$\frac{9}{2}$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设等比数列{bn}满足b1=a1,b4=a15,求{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是(  )
A.抽签法B.系统抽样法C.分层抽样法D.随机数法

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.观察下列等式:
1-$\frac{1}{2}$=$\frac{1}{2}$
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{1}{3}$+$\frac{1}{4}$
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$

据此规律,第n个等式可为$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}$+…+$\frac{1}{2n-1}-\frac{1}{2n}$=$\frac{1}{n+1}+\frac{1}{n+2}$+…+$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个二元码是由0和1组成的数字串${x_1}{x_2}…{x_n}({n∈{N^*}})$,其中xk(k=1,2,…,n)称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)
已知某种二元码x1x2…x7的码元满足如下校验方程组:$\left\{\begin{array}{l}{x_4}⊕{x_5}⊕{x_6}⊕{x_7}=0\\{x_2}⊕{x_3}⊕{x_6}⊕{x_7}=0\\{x_1}⊕{x_3}⊕{x_5}⊕{x_7}=0\end{array}\right.$
其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于5.

查看答案和解析>>

同步练习册答案