精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=x3+x-6,若不等式f(x)≤m2-2m+3对于所有x∈[-2,2]恒成立,则实数m的取值范围是m$≤1-\sqrt{2}$或m$≥1+\sqrt{2}$.

分析 要使原式恒成立,只需m2-2m+3大于等于f(x)在[-2,2]上的最大值,然后再利用导数求函数f(x)在[-2,2]上的最大值,最后求解不等式得答案.

解答 解:f(x)=x3+x-6,x∈[-2,2],
f′(x)=3x2+1>0,
∴函数f(x)在闭区间[-2,2]上为增函数,
而f(2)=23+2-6=4,
∴函数f(x)在[-2,2]上的最大值为4,
由f(x)≤m2-2m+3对于所有x∈[-2,2]恒成立,
得4≤m2-2m+3,即m2-2m-1≥0,
解得:m$≤1-\sqrt{2}$或m$≥1+\sqrt{2}$.
∴实数m的取值范围是m$≤1-\sqrt{2}$或m$≥1+\sqrt{2}$.
故答案为:m$≤1-\sqrt{2}$或m$≥1+\sqrt{2}$.

点评 本题考查了不等式恒成立问题,一般是转化为函数的最值问题来解决,解答本题的关键是利用导数求函数在闭区间上的最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+|x-a|.
(1)当a=1时,求函数f(x)的最小值;
(2)试讨论函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设命题p:函数f(x)=x3在R上为增函数;命题q:函数f(x)=sin($\frac{π}{2}$+x)为奇函数,则下列命题中真命题是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,阴影部分区域中的任意点(含边界)都满足不等式x-2y>a,则实数a的取值范围为(  )
A.(-∞,1)B.(-∞,-2)C.(-2,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出下列四个命题:
①函数y=-$\frac{1}{x}$在R上单调递增;
②函数y=$\frac{{\sqrt{1-{x^2}}}}{{|{x+2}|-2}}$为奇函数;
③若函数f(2x)的定义域为[1,2],则函数f(2x)的定义域为[1,2];
④若函数y=x2+2(a-1)x+2在(-∞,4)上是减函数,则实数a的取值范围是(-∞,-3).
其中正确的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足不等式组$\left\{\begin{array}{l}x≤1\\ x+y+2≥0\\ kx-y≥0\end{array}\right.$,若目标函数z=2x-y仅在点(1,k)处取得最小值,则实数k的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,与函数f(x)=lg(x-2)定义域相同的函数为(  )
A.y=2x-2B.$y={(\sqrt{x-2})^2}$C.$y=\frac{1}{{\sqrt{x-2}}}$D.$y=\sqrt{{{(x-2)}^2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若数列{an}的前n项和为Sn,且满足Sn=$\frac{3}{2}$an-3,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=sinxsin(x-$\frac{π}{3}$)+$\frac{5}{2}$cos2x的值域为[$\frac{6-\sqrt{17}}{4}$,$\frac{6+\sqrt{17}}{4}$].

查看答案和解析>>

同步练习册答案