精英家教网 > 高中数学 > 题目详情
20.设命题p:函数f(x)=x3在R上为增函数;命题q:函数f(x)=sin($\frac{π}{2}$+x)为奇函数,则下列命题中真命题是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∨q

分析 分别判断命题p,q的真假,结合复合命题真假的关系进行判断即可.

解答 解:命题p:函数f(x)=x3在R上为增函数,为真命题.
命题q:函数f(x)=sin($\frac{π}{2}$+x)=cosx为偶函数,则命题q为假命题.
则p∧(¬q)为真命题.,其它为假命题.
故选:B

点评 本题主要考查复合命题的真假判断,根据函数的性质判断命题p,q的真假是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知圆的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.$(θ∈[0,2π],θ为参数),将圆上所有点的横坐标伸长到原来的$\sqrt{3}$倍,纵坐标不变得到曲线C1;以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρsin({θ+\frac{π}{4}})=4\sqrt{2}$.
(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程
(Ⅱ)设P为曲线C1上的动点,求点 P与曲线C2上点的距离的最小值,并求此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,1)
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求x的值.
(2)若<$\overrightarrow{a}$,$\overrightarrow{b}$>为锐角,求x的范围;
(3)当($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$)时,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设p:$\left\{\begin{array}{l}{4x+3y-12≥0}\\{3-x≥0}\\{x+3y≤12}\end{array}\right.$(x,y∈R),q:x2+y2≤r2(x,y∈R,r>0)若p是q的充分不必要条件,则r的取值范围是[3$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集U=R,A={x|x(x-2)<0},B={x|x<1},则图中阴影部分表示的集合为(  )
A.{x|x≥1}B.{x|1≤x<2}C.{x|x≤1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.当x>0时,不等式(a2-3)x>(2a)x恒成立,则实数a的取值范围是a>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算下列各式的值
(1)log3$\sqrt{27}$+lg25+lg4$+{({0.125})^{\frac{1}{3}}}$
(2)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求值:$\frac{{a+{a^{-1}}}}{{{a^2}+{a^{-2}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x3+x-6,若不等式f(x)≤m2-2m+3对于所有x∈[-2,2]恒成立,则实数m的取值范围是m$≤1-\sqrt{2}$或m$≥1+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数$f(x)=\left\{\begin{array}{l}{2^{-x}}-2,x≤0\\{x^{\frac{1}{2}}},x>0\end{array}\right.$,如果f(x0)>1,则x0的取值范围是(  )
A.x0<-1或x0>1B.-log23<x0<1C.x0<-1D.x0<-log23或x0>1

查看答案和解析>>

同步练习册答案