精英家教网 > 高中数学 > 题目详情
5.设a1,a2,…,an∈R,n≥3.若p:a1,a2,…,an成等比数列;q:(a${\;}_{1}^{2}$+a${\;}_{2}^{2}$+…+a${\;}_{n-1}^{2}$)(a${\;}_{2}^{2}$+a${\;}_{3}^{2}$+…+a${\;}_{n}^{2}$)=(a1a2+a2a3+…+an-1an2,则p是q的充分不必要条件.

分析 运用柯西不等式,可得:(a12+a22+…+an-12)(a22+a32+…+an2)≥(a1a2+a2a3+…+an-1an2,讨论等号成立的条件,结合等比数列的定义和充分必要条件的定义,即可得到.

解答 解:由a1,a2,…,an∈R,n≥3.由柯西不等式,可得:
(a12+a22+…+an-12)(a22+a32+…+an2)≥(a1a2+a2a3+…+an-1an2
若a1,a2,…,an成等比数列,即有$\frac{{a}_{2}}{{a}_{1}}$=$\frac{{a}_{3}}{{a}_{2}}$=…=$\frac{{a}_{n}}{{a}_{n-1}}$,
则(a12+a22+…+an-12)(a22+a32+…+an2)=(a1a2+a2a3+…+an-1an2
即由p推得q,
但由q推不到p,比如a1=a2=a3=…=an=0,则a1,a2,…,an不成等比数列.
故p是q的充分不必要条件.
故答案为:充分不必要.

点评 本题考查了柯西不等式的应用、等比数列的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{\sqrt{2}}{2}t\\ y=2+\frac{\sqrt{2}}{2}t\end{array}$(t为参数),以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρsin2θ-4cos θ=0,已知直线l与曲线C相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数范围,若复数z满足$\frac{4}{1+z}=1-i$,则$z•\overline z$=(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,最小正周期为$\frac{π}{2}$的是(  )
A.y=sinxB.y=sinxcosxC.y=tan2πD.y=cos4x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,∠C=90°,且CA=CB=3,点M满足$\overrightarrow{BM}$=3$\overrightarrow{AM}$,则$\overrightarrow{CM}$•$\overrightarrow{CA}$=$\frac{27}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了了解2015年齐市一模考试某校全体考生数学成绩,现从参加考试的考生中随机抽取20名学生的数学成绩进行调查,并将这20名考生的数学成绩制成茎叶图(如图所示).
(1)指出这20名考生数学成绩的中位数、众数,并用这20名学生的平均成绩估计全校考生的平均成绩;
(2)从这20名成绩不低于130分的考生中随机选取2人,求这2人成绩之差的绝对值不低于5分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对于任意的两个正数m,n,定义运算⊙:当m、n都为偶数或都为奇数时,m⊙n=$\frac{m+n}{2}$;当m、n为一奇一偶时,m⊙n=$\sqrt{mn}$,设集合A={(a,b)|a⊙b=4,a,b∈N*},则集合A的子集个数为210-1..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知多面体ABCDEF中,四边形ABCD为平行四边形,EF⊥CE,且$AC=\sqrt{2}$,AE=EC=1,$EF=\frac{BC}{2}$,AD∥EF.
(1)求证:平面ACE⊥平面ADEF;
(2)若AE⊥AD,直线AE与平面ACF夹角的正弦值为$\frac{{\sqrt{3}}}{3}$,求AD的值.

查看答案和解析>>

同步练习册答案