精英家教网 > 高中数学 > 题目详情
16.执行如图所示的程序框,输出的T=(  )
A.17B.29C.44D.52

分析 模拟执行程序框图,依次写出每次循环得到的S,n,T的值,当S=12,T=29时满足条件T>2S,退出循环,输出T的值为29.

解答 解:模拟执行程序框图,可得
S=3,n=1,T=2
不满足条件T>2S,S=6,n=2,T=8
不满足条件T>2S,S=9,n=3,T=17
不满足条件T>2S,S=12,n=4,T=29
满足条件T>2S,退出循环,输出T的值为29.
故选:B.

点评 本题主要考查了循环结构的程序框图,依次写出每次循环得到的S,n,T的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=(a-x)ex-1(e为自然对数的底数).
(Ⅰ)当a=1时,求f(x)的最大值;
(Ⅱ)当x∈(-∞,0)∪(0,+∞)时,$\frac{f(x)}{x}$<1恒成立,证明:a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知在△ABC中,∠A、∠B、∠C所对的边是a、b、c,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$且$\overrightarrow{GA}$•$\overrightarrow{GB}$=0,若(tanA+tanB)•tanC=mtanAtanB,则m的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=|sinx|,x∈[-2π,2π],则方程f(x)=$\frac{1}{2}$的所有根的和等于(  )
A.0B.πC.D.-2π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.正四面体(即各条棱长均相等的三棱锥)的棱长为6,某学生画出该正四面体的三视图如下,其中有一个视图是错误的,则该视图修改正确后对应图形的面积为6$\sqrt{6}$.该正四面体的体积为18$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,一个底面半径为$\sqrt{3}$的圆柱被与其底面所成角为30°的平面所截,其截面是一个椭圆Γ,以该椭圆Γ的中心为原点,长轴所在的直线
为x轴,建立平面直角坐标系.点F是椭圆的右焦点.点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足$\overrightarrow{MN}$•$\overrightarrow{NF}$=0,若点P满足$\overrightarrow{OM}$=
2$\overrightarrow{ON}$+$\overrightarrow{PO}$.
(1)求该椭圆Γ的长轴长及点P的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹交于A、B两点,直线OA、OB与直线x=-1分别交于点S、T(O为坐标原点),试判断$\overrightarrow{FS}$•$\overrightarrow{FT}$是否为定值?若是.求出这个定值:若不是.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=mlnx+$\frac{2m}{x}$-$\frac{{e}^{x}}{{x}^{2}}$
(1)若m≤0,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{\sqrt{2}}{2}$,点Q($\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆C上异于其顶点的动点,O为坐标原点,过椭圆右焦点F2作OP平行线交椭圆C于A、B两点.
(i)试探究|OP|2和|AB|的比值是否为一个常数?若是,求出这个常数,若不是,请说明理由.
(ii)记△PF2A的面积为S1,△OF2B的面积为S2,令S=S1+S2,求证:S$<\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}$且z=2x+y的最小值为-3,则k=-1.

查看答案和解析>>

同步练习册答案