精英家教网 > 高中数学 > 题目详情
11.正四面体(即各条棱长均相等的三棱锥)的棱长为6,某学生画出该正四面体的三视图如下,其中有一个视图是错误的,则该视图修改正确后对应图形的面积为6$\sqrt{6}$.该正四面体的体积为18$\sqrt{2}$.

分析 根据三视图可得正三棱锥的高为2$\sqrt{6}$,底面正三角形的边长为6,即可得出结论.

解答 解:由三视图知:正视图的高明显不对,应该是2$\sqrt{6}$,底面正三角形的边长为6,对应图形的面积为$\frac{1}{2}×6×2\sqrt{6}$=6$\sqrt{6}$,正四面体的体积为$\frac{1}{3}×\frac{\sqrt{3}}{4}×{6}^{2}×2\sqrt{6}$=18$\sqrt{2}$.
故答案为:6$\sqrt{6}$;18$\sqrt{2}$.

点评 本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若点M在线段AP的延长线上且P为MA的中点,PA=1,AD=2,求二面角
    B-ED-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log2x,若f(a)+f(b)=2,则a+b的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD的底面是直角梯形,∠BAD=∠CDA=90°,侧面PAD⊥底面ABCD,AB=PD=1,PA=DC=2,AD=$\sqrt{3}$,点E是BC的中点.
(1)求证:AE⊥平面PBD;
(2)设F是棱PC上的点,$\overrightarrow{PF}$=λ$\overrightarrow{PC}$(0<λ<1),若二面角F-DE-A的正切值为-1,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,四棱锥P-ABCD的底面ABCD是直角梯形,BC∥AD,AB⊥AD,AB=BC=$\frac{1}{2}$AD,PA⊥底面ABCD,过BC的平面交PD于M,交PA与N(M与D不重合).
(Ⅰ)求证:MN∥BC;
(Ⅱ)求证:CD⊥PC;
(Ⅲ)如果BM⊥AC,求此时$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框,输出的T=(  )
A.17B.29C.44D.52

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\frac{1}{2}$x2sinx+xcosx,则其导函数f′(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知角θ的顶点为坐标原点O,始边为x轴的非负半轴,且满足sin$\frac{θ}{2}$=$-\frac{3}{5}$,cos$\frac{θ}{2}$=$\frac{4}{5}$,设B为角θ终边上任意一点,$\overrightarrow{OA}=(0,-1)$,则|$\overrightarrow{OA}-\overrightarrow{OB}$|的取值范围是(  )
A.[$\frac{7}{25},+∞)$B.[$\frac{1}{3}$,+∞)C.[$\frac{4}{5}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax3+x2f′(1)+1,且f′(-1)=9.
(1)求曲线f(x)在x=1处的切线方程;
(2)若存在x∈(1,+∞)使得函数f(x)<m成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案