分析 令t=2x-$\frac{π}{6}$,由x∈[0,$\frac{π}{2}$]可得-$\frac{π}{6}$≤2x-$\frac{π}{6}$≤$\frac{5π}{6}$,由题意可得g(t)=2sint+m在t∈[-$\frac{π}{6}$,$\frac{5π}{6}$]上有两个不同的零点,故y=2sint 和y=-m在t∈[-$\frac{π}{6}$,$\frac{5π}{6}$]上有两个不同的交点,从而求得m的取值范围.
解答
解:令t=2x-$\frac{π}{6}$,由x∈[0,$\frac{π}{2}$]可得-$\frac{π}{6}$≤2x-$\frac{π}{6}$≤$\frac{5π}{6}$,
故t∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
由题意可得g(t)=2sint+m
在t∈[-$\frac{π}{6}$,$\frac{5π}{6}$]上有两个不同的零点,
故y=2sint 和y=-m在t∈[-$\frac{π}{6}$,$\frac{5π}{6}$]上有两个不同的交点,
如图所示:
故1≤-m<2,即-2<m≤-1.
故答案为:(-2,-1].
点评 本题考查正弦函数的图象,函数的零点的判定方法,体现了数形结合及转化的数学思想,画出图形是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢歌舞类节目 | 不喜欢歌舞类节目 | 合计 | |
| 男性 | |||
| 女性 | |||
| 合计 |
| P(K2≥k0) | 0.15 | 0,10 | 0.05 | 0.025 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{5}$+y2=1 | B. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1 | ||
| C. | $\frac{{x}^{2}}{5}$+y2=1或$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1 | D. | 以上答案都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (-∞,3) | C. | (3,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com