分析 由已知首先求出$\overrightarrow{a}$,$\overrightarrow{b}$的数量积以及差的模,然后利用数量积公式求$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角的余弦值.
解答 解:由已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=6,|$\overrightarrow{a}$+$\overrightarrow{b}$|=8,
得到$\overrightarrow{a}•\overrightarrow{b}$=6,
$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{(\overrightarrow{a}+\overrightarrow{b})^{2}-4\overrightarrow{a}•\overrightarrow{b}}$=2$\sqrt{10}$,
所以则$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角的余弦值为:
$\frac{(\overrightarrow{a}+\overrightarrow{b})(\overrightarrow{a}-\overrightarrow{b})}{|\overrightarrow{a}+\overrightarrow{b}||\overrightarrow{a}-\overrightarrow{b}|}$=$\frac{{\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}}{8×2\sqrt{10}}$=$\frac{-20}{16\sqrt{10}}$=$-\frac{\sqrt{10}}{8}$;
故答案为:$-\frac{{\sqrt{10}}}{8}$.
点评 本题考查了平面向量的模的运算、数量积公式的运用;关键是求出两个向量的数量积以及差的模.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{2}$或-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 10 | C. | 12 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 椭圆 | B. | 抛物线 | C. | 双曲线 | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com