精英家教网 > 高中数学 > 题目详情

【题目】如图所示,空间几何体中,四边形是梯形,四边形是矩形,且平面平面 是线段上的动点.

(1)求证:

(2)试确定点的位置,使平面,并说明理由;

(3)在(2)的条件下,求空间几何体的体积.

【答案】(1)见解析;(2)

【解析】试题分析:

(1)由线面垂直证得线线垂直即可;

(2) 是线段的中点时满足题意,用直线与平面的判断定理由可得结论;

(3)将几何体补形为三棱柱,然后利用组合体的结果求解体积即可.

试题解析:

解:(1)四边形CDEF是矩形,

在平面内,

(2)当是线段的中点时, ,证明如下:

连结连结,由于

所以,又在平面内,

所以

(3)将几何体补成三棱柱

∴三棱柱的体积为△ADE·=

∴ 空间几何体的体积为=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中, 平面,底面是正方形, .

(1)求异面直线所成角的大小(结果用反三角函数值表示);

(2)求点分别是棱的中点,求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,二次函数的图象与轴交于 两点,点的坐标为.当变化时,解答下列问题:

(1)以为直径的圆能否经过点?说明理由;

(2)过 三点的圆在轴上截得的弦长是否为定值?若是,则求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若曲线上点处的切线过点,求函数的单调减区间;

(Ⅱ)若函数上无零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A.y=﹣x3
B.y=
C.y=x
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax+2,x∈[﹣5,5]
(1)求实数a的取值范围,使y=f(x)在定义域上是单调递减函数;
(2)用g(a)表示函数y=f(x)的最小值,求g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市地产数据研究所的数据显示,2016年该市新建住宅销售均价走势如下图所示,3月至7月房价上涨过快,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究所发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试求关于的回归方程;

(2)政府若不调控,依次相关关系预测第12月份该市新建住宅的销售均价.

参考数据:

回归方程中斜率和截距的最小二乘法估计公示分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的周期以及单调递增区间;
(2)在给出的直角坐标系中,请用五点作图法画出f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

同步练习册答案