精英家教网 > 高中数学 > 题目详情

【题目】如图a,在直角梯形ABCD中,ADC=90°,CDAB,AB=8,AD=CD=4,将ADC沿AC折起,使平面ADC平面ABC,得到几何体D-ABC,如图b所示.

1求证:BC平面ACD;

2求几何体D-ABC的体积.

【答案】1详见解析2

【解析】

试题分析:1证明ACBC,利用平面与平面垂直的性质定理,证明BC平面ACD.21可知,BC为三棱锥B-ACD的高,求出BC,SACD,即可求解VB-ACD,由等体积性可知,求解几何体D-ABC的体积

试题解析:1明:在中,可得AC=BC=4,从而AC2+BC2=AB2

故ACBC,又平面ADC平面ABC,平面ADC∩平面ABC=AC,BC平面ABC,

BC平面ACD.

2解:由1可知,BC为三棱锥B-ACD的高,BC=4,SACD8

VB-ACDSACD·BC=×8×4

由等体积性可知,几何体D-ABC的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新一届中央领导集体非常重视勤俭节约,从光盘行动节约办春晚到饭店吃饭是吃光盘子或时打包带走,称为光盘族,否则称为非光盘族.政治课上政治老师选派几位同学组成研究性小组,从某社区[25,55]岁的人群中随机抽取人进行了一次调查,得到如下统计表:

组数

分组

频数

频率

光盘族占本组比例

1

[25,30

50

005

30%

2

[30,35

100

010

30%

3

[35,40

150

015

40%

4

[40,45

200

020

50%

5

[45,50

a

b

65%

6

[50,55

200

020

60%

1)求的值,并估计本社区[25,55)岁的人群中光盘族所占比例;

2)从年龄段在[35,45)的光盘族中采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队.求选取的2名领队分别来自[35,40)与[40,45)两个年龄段的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直角梯形所在的平面垂直于平面,.

1在直线上是否存在一点,使得平面?请证明你的结论.

2求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,解关于的不等式

(2)若关于的不等式的解集是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.

(1)若直线与曲线交于两点,求的值;

(2)求曲线的内接矩形的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面是正三角形,且与底面垂直,底面是边长为2的菱形, 的中点,过三点的平面交 的中点,求证:

(1)平面

(2)平面

(3)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40的半圆形(以为圆心,为直径)绿化区域,现计划对其进行改建,在的延长线上取点,使,在半圆上选定一点,改建后的绿化区域由扇形区域和三角形区域组成,其面积为,设.

(1)写出关于的函数关系式,并指出的取值范围;

(2)试问多大时,改建后的绿化区域面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.

(1)求频率分布直方图中的值;

(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;

(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点为圆心的圆过原点O与x轴另一个交点为M,与y轴另一个交点为N,

1求证:△MON的面积为定值;

2直线4x+ y-4=0与圆C交于点AB,若,求圆C的方程

3直线l:x+ y -5=0和圆C交于A,B两点,且AB=,求圆心C的坐标。

查看答案和解析>>

同步练习册答案