精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=|log3x|,实数m,n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]的最大值为2,则$\frac{n}{m}$=9.

分析 由题意f(x)=|log3x|,正实数m,n满足m<n,且f(m)=f(n),即-log3m=log3n,可得mn=1.对[m2,n]范围最大值的可能性进行讨论.可求m,n的值.

解答 解:∵f(x)=|log3x|,正实数m,n满足m<n,且f(m)=f(n),∴-log3m=log3n,∴mn=1.
∵f(x)在区间[m2,n]上的最大值为2,函数f(x)在[m2,1)上是减函数,在(1,n]上是增函数,
∴-log3m2=2,或log3n=2.
若-log3m2=2是最大值,得m=$\frac{1}{3}$,则n=3,此时log3n=1,满足题意条件.那么:$\frac{n}{m}=3÷\frac{1}{3}=9$
同理:若log3n=2是最大值,得n=9,则m=$\frac{1}{9}$,此时-log3m2=4,不满足题意条件.
综合可得 m=$\frac{1}{3}$,n=3,故$\frac{n}{m}=9$,
故答案为9.

点评 本题考查的知识点是对数函数的图象和性质,难度不大,考虑最值的讨论思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.过抛物线y2=4x的焦点F且倾斜角为$\frac{π}{4}$的直线交抛物线于A,B两点,||FB|-|FA||=4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位,复数i•z=1-2i,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x(x-3)<0},B={-1,0,1,2,3},则A∩B=(  )
A.{-1}B.{1,2}C.{0,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为(  )
A.36+6$\sqrt{10}$B.36+3$\sqrt{10}$C.54D.27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点F1,F2,离心率$e=\frac{{\sqrt{2}}}{2}$,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,点A为椭圆上一动点(非长轴端点),AF2的延长线与椭圆交于B点,AO的延长线与椭圆交于C点,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知抛物线C:y2=2px(p>0),过其焦点F的直线l交抛物线C于点A、B,|AF|=3|BF|,则|AB|=(  )
A.pB.$\frac{4}{3}p$C.2pD.$\frac{8}{3}p$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线y2=4x的焦点为F,P为抛物线上一点,过P作y轴垂线,垂足为M,若|PF|=4,则△PFM的面积是$3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(0,-2),椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{3}}{2}$,F是椭圆E的右焦点,直线AF的斜率为$\frac{2\sqrt{3}}{3}$,O是坐标原点.
(1)求E的方程;
(2)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求直线l的方程.

查看答案和解析>>

同步练习册答案