精英家教网 > 高中数学 > 题目详情
12.已知i是虚数单位,复数i•z=1-2i,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数i•z=1-2i,∴-i•i•z=-i(1-2i),z=-2-i,
则复数z在复平面内对应的点(-2,-1)位于第三象限.
故选:C.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-m|-|x+3m|(m>0).
(Ⅰ)当m=1时,求不等式f(x)≥1的解集;
(Ⅱ)对于任意实数x,t,不等式f(x)<|2+t|+|t-1|恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)是定义在R上的奇函数,对任意两个正数x1,x2(x1<x2)都有$\frac{{f({x_1})}}{x_1}>\frac{{f({x_2})}}{x_2}$,记$a=25f({{{0.2}^2}}),b=f(1),c=-{log_5}3×f({{{log}_{\frac{1}{3}}}5})$,则a,b,c之间的大小关系为(  )
A.a>b>cB.b>c>aC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$则称函数f(x)是[a,b]上的“中值函数”.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+m$是[0,m]上的“中值函数”,则实数m的取值范围是(  )
A.$({\frac{3}{4},1})$B.$({\frac{3}{4},\frac{3}{2}})$C.$({1,\frac{3}{2}})$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(x+1)-$\frac{{a{x^2}+x}}{{{{({1+x})}^2}}}$.
(1)当a=1时,求函数f(x)在x=e-1处的切线方程;
(2)当$\frac{2}{3}$<a≤2时,讨论函数f(x)的单调性;
(3)若x>0,求函数g(x)=(1+$\frac{1}{x}}$)x(1+x)${\;}^{\frac{1}{x}}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将函数f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)的图象向右平移$\frac{π}{4ω}$个单位,得到函数y=g(x)的图象,若y=g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上为增函数,则ω的最大值为(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是公差不为0的等差数列,首项a1=1,且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=an+2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=|log3x|,实数m,n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]的最大值为2,则$\frac{n}{m}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{\frac{{2}^{x}+2}{2},x≤1}\\{|lo{g}_{2}(x-1)|,x>1}\end{array}\right.$,则函数F(x)=f[f(x)]-2f(x)-$\frac{3}{2}$的零点个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案