精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=ln(x+1)-$\frac{{a{x^2}+x}}{{{{({1+x})}^2}}}$.
(1)当a=1时,求函数f(x)在x=e-1处的切线方程;
(2)当$\frac{2}{3}$<a≤2时,讨论函数f(x)的单调性;
(3)若x>0,求函数g(x)=(1+$\frac{1}{x}}$)x(1+x)${\;}^{\frac{1}{x}}}$的最大值.

分析 (1)求出函数的导数,计算f′(e-1),f(e-1)的值,求出切线方程即可;
(2)求出函数的导数,根据a的范围求出函数的单调区间即可;
(3)令φ(x)=lng(x),根据φ(x)在(0,+∞)上的最大值等于其在(0,1)上的最大值,求出φ(x)的最大值,从而求出g(x)的最大值即可.

解答 解:(1)a=1时,函数f(x)=ln(1+x)-$\frac{x}{1+x}$,
f′(x)=$\frac{1}{1+x}$-$\frac{1}{{(1+x)}^{2}}$=$\frac{x}{{(1+x)}^{2}}$,f′(e-1)=$\frac{e-1}{{e}^{2}}$,
又f(e-1)=$\frac{1}{e}$,
∴a=1时,函数f(x)在x=e-1处的切线方程是:
y-$\frac{1}{e}$=$\frac{e-1}{{e}^{2}}$(x-e+1);
(2)由题意得:函数f(x)的定义域是(-1,+∞),
且f′(x)=$\frac{x(x-2a+3)}{{(1+x)}^{3}}$,
$\frac{3}{2}$<a≤2时,则2a-3>0,
若-1<x<0或x>2a-3,则f′(x)>0,若0<x<2a-3,则f′(x)<0,
∴f(x)在区间(-1,0)(2a-3,+∞)递增,在(0,2a-3)递减;
(3)显然g(x)=g($\frac{1}{x}$),令φ(x)=lng(x),
因此φ(x)在(0,+∞)上的最大值等于其在(0,1)上的最大值,
φ′(x)=(1-$\frac{1}{{x}^{2}}$)ln(1+x)+(x+$\frac{1}{x}$)•$\frac{1}{1+x}$-lnx-1,
设h(x)=(1-$\frac{1}{{x}^{2}}$)ln(1+x)+(x+$\frac{1}{x}$)•$\frac{1}{1+x}$-lnx-1,
h′(x)=$\frac{{2(1+x)}^{2}[ln(1+x)-\frac{{2x}^{2}+x}{{(1+x)}^{2}}]}{{{x}^{3}(1+x)}^{2}}$,
由(2)得,当a=2时,f(x)在区间(0,1]递减,
则f(x)=ln(1+x)-$\frac{{2x}^{2}+x}{{(1+x)}^{2}}$<f(0)=0,h′(x)<0,
故函数h(x)在区间(0,1]递减,于是h(x)≥h(1)=0,
从而函数φ(x)在区间(0,1]递增,
进而φ(x)≤φ(1)=2ln2,
∵φ(x)=lng(x),
∴函数g(x)的最大值是4.

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某公司在迎新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择.
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为$\frac{4}{5}$,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为$\frac{2}{5}$,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要得到函数$y=sin({2x+\frac{π}{3}})$的图象,只要将函数y=sinx的图象(  )
A.先向左平移$\frac{π}{6}$个单位,再将各点横坐标变为原来的$\frac{1}{2}$倍
B.先向右平移$\frac{π}{6}$个单位,再将各点横坐标变为原来的2倍
C.先向左平移$\frac{π}{3}$个单位,再将各点横坐标变为原来的$\frac{1}{2}$倍
D.先向右平移$\frac{π}{3}$个单位,再将各点横坐标变为原来的2倍

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z满足z•i=2-i(i为虚数单位),则$\overline z$在复平面内对应的点所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若二项式${({x-\frac{1}{{\sqrt{x}}}})^n}$的展开式中只有第4项的二项式系数最大,则展开式中常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位,复数i•z=1-2i,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点M与双曲线C的焦点不重合,点M关于F1,F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|-|BN|=12,则a=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为(  )
A.36+6$\sqrt{10}$B.36+3$\sqrt{10}$C.54D.27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.△ABC中,cosC是方程2x2-3x-2=0的一个根.
(1)求C的度数;
(2)当a+b=10时,求△ABC周长的最小值.

查看答案和解析>>

同步练习册答案