精英家教网 > 高中数学 > 题目详情
15.已知复数z满足z•i=2-i(i为虚数单位),则$\overline z$在复平面内对应的点所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由z•i=2-i,得$z=\frac{2-i}{i}$,然后利用复数代数形式的乘除运算化简复数z,求出$\overline{z}$在复平面内对应的点的坐标,则答案可求.

解答 解:由z•i=2-i,
得$z=\frac{2-i}{i}$=$\frac{-i(2-i)}{-{i}^{2}}=-1-2i$,
则$\overline{z}=-1+2i$,
则$\overline z$在复平面内对应的点的坐标为:(-1,2),位于第二象限.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若集合M={x|log2x<1},集合N={x|x2-1≤0},则M∩N=(  )
A.{x|1≤x<2}B.{x|-1≤x<2}C.{x|-1<x≤1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<2}\\{{x}^{2},x≥2}\end{array}\right.$,若f(a+1)≥f(2a-1),则实数a的取值范围是(  )
A.(-∞,1]B.(-∞,2]C.[2,6]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)是定义在R上的奇函数,对任意两个正数x1,x2(x1<x2)都有$\frac{{f({x_1})}}{x_1}>\frac{{f({x_2})}}{x_2}$,记$a=25f({{{0.2}^2}}),b=f(1),c=-{log_5}3×f({{{log}_{\frac{1}{3}}}5})$,则a,b,c之间的大小关系为(  )
A.a>b>cB.b>c>aC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,在x轴上有一点M(-3,0)满足$\overrightarrow{M{F_2}}=2\overrightarrow{M{F_1}}$.
(1)求椭圆C的方程;
(2)直线l与直线x=2交于点A,与直线x=-2交于点B,且$\overrightarrow{{F_2}A}•\overrightarrow{{F_2}B}=0$,判断并证明直线l与椭圆C的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$则称函数f(x)是[a,b]上的“中值函数”.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+m$是[0,m]上的“中值函数”,则实数m的取值范围是(  )
A.$({\frac{3}{4},1})$B.$({\frac{3}{4},\frac{3}{2}})$C.$({1,\frac{3}{2}})$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(x+1)-$\frac{{a{x^2}+x}}{{{{({1+x})}^2}}}$.
(1)当a=1时,求函数f(x)在x=e-1处的切线方程;
(2)当$\frac{2}{3}$<a≤2时,讨论函数f(x)的单调性;
(3)若x>0,求函数g(x)=(1+$\frac{1}{x}}$)x(1+x)${\;}^{\frac{1}{x}}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是公差不为0的等差数列,首项a1=1,且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=an+2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y+4≥0\\ x+y≥0\\ x≤3\end{array}\right.$,则z=3x+y的最小值是(  )
A.-4B.-3C.0D.3

查看答案和解析>>

同步练习册答案