精英家教网 > 高中数学 > 题目详情
10.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,在x轴上有一点M(-3,0)满足$\overrightarrow{M{F_2}}=2\overrightarrow{M{F_1}}$.
(1)求椭圆C的方程;
(2)直线l与直线x=2交于点A,与直线x=-2交于点B,且$\overrightarrow{{F_2}A}•\overrightarrow{{F_2}B}=0$,判断并证明直线l与椭圆C的交点个数.

分析 (1)设椭圆的焦距为2c,由题意列a,c的方程组,求得a,c的值,再由隐含条件求得b,则椭圆方程可求;
(2)设出直线l的方程为:y=kx+m,可得A(2,2k+m),B(-2,m-2k),由$\overrightarrow{{F_2}A}•\overrightarrow{{F_2}B}=0$,得(1,2k+m)•(-3,m-2k)=0,即m2=4k2+3.联立直线方程与椭圆方程,化为关于x的一元二次方程,利用判别式等于0得答案.

解答 解:(1)设椭圆的焦距为2c,由题意有:$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{1}{2}}\\{c+3=2(-c+3)}\end{array}\right.$,解得a=2,c=1.
∴b2=a2-c2=3.
则椭圆C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)由题意可知直线l的斜率存在,设直线l的方程为:y=kx+m.
则A(2,2k+m),B(-2,m-2k),
由$\overrightarrow{{F_2}A}•\overrightarrow{{F_2}B}=0$,得(1,2k+m)•(-3,m-2k)=0,
即m2=4k2+3.
联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2+8kmx+4m2-12=0.
∵△=64k2m2-4(3+4k2)(4m2-12)=4(48k2-12m2+36)=0.
∴直线l与椭圆C的交点个数是1.

点评 本题考查椭圆的简单性质,可直线与椭圆位置关系的应用,训练了向量垂直与数量积间关系的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=3sin(ωx+ϕ)$(ω>0,|ϕ|≤\frac{π}{2})$的部分图象如图所示,A,B两点之间的距离为10,且f(2)=0,若将函数f(x)的图象向右平移t(t>0)的单位长度后所得函数图象关于y轴对称,则t的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=x{e^x}-a(\frac{x^2}{2}+x)(a∈R)$.
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要得到函数$y=sin({2x+\frac{π}{3}})$的图象,只要将函数y=sinx的图象(  )
A.先向左平移$\frac{π}{6}$个单位,再将各点横坐标变为原来的$\frac{1}{2}$倍
B.先向右平移$\frac{π}{6}$个单位,再将各点横坐标变为原来的2倍
C.先向左平移$\frac{π}{3}$个单位,再将各点横坐标变为原来的$\frac{1}{2}$倍
D.先向右平移$\frac{π}{3}$个单位,再将各点横坐标变为原来的2倍

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个正方体的顶点都在球面上,已知球的体积为36π,则正方体的棱长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z满足z•i=2-i(i为虚数单位),则$\overline z$在复平面内对应的点所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若二项式${({x-\frac{1}{{\sqrt{x}}}})^n}$的展开式中只有第4项的二项式系数最大,则展开式中常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点M与双曲线C的焦点不重合,点M关于F1,F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|-|BN|=12,则a=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知正三棱柱ABC-A1B1C1的各个棱长都相等,E为BC的中点,动点F在CC1上,且不与点C重合
(1)当CC1=4CF时,求证:EF⊥A1C
(2)设二面角C-AF-E的大小为α,求tanα的最小值.

查看答案和解析>>

同步练习册答案