精英家教网 > 高中数学 > 题目详情
11.过抛物线y2=4x的焦点F且倾斜角为$\frac{π}{4}$的直线交抛物线于A,B两点,||FB|-|FA||=4$\sqrt{2}$.

分析 先设点A,B的坐标,求出直线方程后与抛物线方程联立消去y得到关于x的一元二次方程,求出两根,再由抛物线的定义得到答案.

解答 解:抛物线y2=4x的焦点F(1,0),准线为x=-1.
设A(x1,y1),B(x2,y2
由$\left\{\begin{array}{l}{y=x-1}\\{{y}^{2}=4x}\end{array}\right.$,可得x2-6x+1=0,解得x1=3+2$\sqrt{2}$,x2=3-2$\sqrt{2}$,
由抛物线的定义可得|FA|=x1+1=4+2$\sqrt{2}$,|FB|=x2+1=4-2$\sqrt{2}$,
则||FB|-|FA||=4$\sqrt{2}$,
故答案为4$\sqrt{2}$.

点评 本题主要考查直线与抛物线的位置关系,注意抛物线定义的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若满足x,y约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=x+y的最大值为(  )
A.$\frac{3}{2}$B.1C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-m|-|x+3m|(m>0).
(Ⅰ)当m=1时,求不等式f(x)≥1的解集;
(Ⅱ)对于任意实数x,t,不等式f(x)<|2+t|+|t-1|恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图1,在直角梯形ABCD中,AB⊥BC,BC∥AD,AD=2AB=4,BC=3,E为AD中点,EF⊥BC,垂足为F.沿EF将四边形ABFE折起,连接AD,AC,BC,得到如图2所示的六面体ABCDEF.若折起后AB的中点M到点D的距离为3.

(Ⅰ)求证:平面ABFE⊥平面CDEF;
(Ⅱ)求六面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<2}\\{{x}^{2},x≥2}\end{array}\right.$,若f(a+1)≥f(2a-1),则实数a的取值范围是(  )
A.(-∞,1]B.(-∞,2]C.[2,6]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.实验测得四组数对(x,y)的值为(1,2),(2,5),(4,7),(5,10),则y与x之间的回归直线方程可能是(  )
A.$\hat y=x+3$B.$\hat y=x+4$C.$\hat y=2x+3$D.$\hat y=2x+4$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)是定义在R上的奇函数,对任意两个正数x1,x2(x1<x2)都有$\frac{{f({x_1})}}{x_1}>\frac{{f({x_2})}}{x_2}$,记$a=25f({{{0.2}^2}}),b=f(1),c=-{log_5}3×f({{{log}_{\frac{1}{3}}}5})$,则a,b,c之间的大小关系为(  )
A.a>b>cB.b>c>aC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$则称函数f(x)是[a,b]上的“中值函数”.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+m$是[0,m]上的“中值函数”,则实数m的取值范围是(  )
A.$({\frac{3}{4},1})$B.$({\frac{3}{4},\frac{3}{2}})$C.$({1,\frac{3}{2}})$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=|log3x|,实数m,n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]的最大值为2,则$\frac{n}{m}$=9.

查看答案和解析>>

同步练习册答案