精英家教网 > 高中数学 > 题目详情
1.若满足x,y约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=x+y的最大值为(  )
A.$\frac{3}{2}$B.1C.-1D.-3

分析 由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$作出可行域如图,

化目标函数z=x+y为y=-x+z,
由图可知,当直线y=-x+z过A时,目标函数有最大值,
由:$\left\{\begin{array}{l}{x-2y=0}\\{x+2y-2=0}\end{array}\right.$,可得A(1,$\frac{1}{2}$),z的最大值为z=1+$\frac{1}{2}$=$\frac{3}{2}$.
故选:A.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知倾斜角60°为的直线l平分圆:x2+y2+2x+4y-4=0,则直线l的方程为(  )
A.$\sqrt{3}$x-y+$\sqrt{3}$+2=0B.$\sqrt{3}$x+y+$\sqrt{3}$+2=0C.$\sqrt{3}$x-y+$\sqrt{3}$-2=0D.$\sqrt{3}$x-y-$\sqrt{3}$+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项和为Sn,Sn=n2+2n,bn=anan+1cos(n+1)π,数列{bn} 的前n项和为Tn,若Tn≥tn2对n∈N*恒成立,则实数t的取值范围是(-∞,-5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中正确的个数是(  )
①有两个面平行,其余各面都是平行四边形的几何体叫棱柱
②有一个面是多边形,其余各面都是三角形的几何体叫棱锥
③若有两个侧面垂直于底面,则该四棱柱为直四棱柱
④圆台所有的轴截面是全等的等腰梯形.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$y=3sin(ωx+\frac{π}{3})$的最小正周期为π,将函数$y=3sin(ωx+\frac{π}{3})$的图象向右平移$\frac{π}{2}$个单位长度,所得图象对应的函数(  )
A.在区间$[\frac{π}{12},\frac{7π}{12}]$上单调递减B.在区间$[\frac{π}{12},\frac{7π}{12}]$上单调递增
C.在区间$[-\frac{π}{6},\frac{π}{3}]$上单调递减D.在区间$[-\frac{π}{6},\frac{π}{3}]$上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知不共线的两个向量$\overrightarrow a\;\;,\;\;\overrightarrow b$满足$|{\overrightarrow a-\overrightarrow b}|=3$且$\overrightarrow a⊥({\overrightarrow a-2\overrightarrow b})$,则$|{\overrightarrow b}|$=(  )
A.3B.4C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在如图所示的程序框图中,若输入的m=98,n=63,则输出的结果为(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为(  )
A.72+6πB.72+4πC.48+6πD.48+4π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过抛物线y2=4x的焦点F且倾斜角为$\frac{π}{4}$的直线交抛物线于A,B两点,||FB|-|FA||=4$\sqrt{2}$.

查看答案和解析>>

同步练习册答案