精英家教网 > 高中数学 > 题目详情
9.下列命题中正确的个数是(  )
①有两个面平行,其余各面都是平行四边形的几何体叫棱柱
②有一个面是多边形,其余各面都是三角形的几何体叫棱锥
③若有两个侧面垂直于底面,则该四棱柱为直四棱柱
④圆台所有的轴截面是全等的等腰梯形.
A.1个B.2个C.3个D.4个

分析 根据棱柱的定义可得①错误;根据棱锥的定义可得②错误;两个侧面不是相邻的时,侧棱与底面不一定垂直,可得③错误;圆台所有的轴截面是全等的等腰梯形,即④正确,从而得出结论.

解答 解:有两个面平行,其余各面都是平行四边形,并且相邻的两个平行四边形的公共边都相互平行,这些面围成的几何体叫棱柱,故①错误.
有一个面是多边形,其余各面都是有公共顶点三角形的几何体叫棱锥,故②错误.
当有两个侧面垂直于底面时,该四棱柱不一定为直四棱柱,如两个侧面不是相邻的时,侧棱与底面不一定垂直,∴③错误;
④圆台所有的轴截面是全等的等腰梯形,正确.
故选A.

点评 本题考查的知识点是棱柱的几何特征,棱锥的几何特征,棱台的几何特征,熟练掌握相关定义是解答的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.曲线y=sinx-2x在x=π处的切线方程为3x+y-π=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平行四边形ABCD中,$\overrightarrow{AB}+\overrightarrow{AD}$=(  )
A.$\overrightarrow{AC}$B.$\overrightarrow{BD}$C.$\overrightarrow{CA}$D.$\overrightarrow{DB}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知平面α∩平面β=l,直线m?α,且m∩l=P,则(  )
A.β内必存在直线与m平行,存在直线与m垂直
B.β内必不存在直线与m平行,必存在直线与m垂直
C.β内必不存在直线与m平行,且不存在直线与m垂直
D.β内必存在直线与m平行,不存在直线与m垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图正方体ABCD-A′B′C′D′中,E、F为中点,
(1)AC与A′D′所成角的大小是45°.
(2)AC与A′D 所成角的大小是60°.
(3)A′E与BF所成角的大小是90°.
(本题只需在横线上填上正确的角度即可,无需写出解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.$\frac{{tan{{12}°}+tan{{18}°}}}{{1-tan{{12}°}•tan{{18}°}}}$=(  )
A.1B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若满足x,y约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=x+y的最大值为(  )
A.$\frac{3}{2}$B.1C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球;④两球至多有一个白球”中的哪几个?(  )
A.①②④B.①②③C.①③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图1,在直角梯形ABCD中,AB⊥BC,BC∥AD,AD=2AB=4,BC=3,E为AD中点,EF⊥BC,垂足为F.沿EF将四边形ABFE折起,连接AD,AC,BC,得到如图2所示的六面体ABCDEF.若折起后AB的中点M到点D的距离为3.

(Ⅰ)求证:平面ABFE⊥平面CDEF;
(Ⅱ)求六面体ABCDEF的体积.

查看答案和解析>>

同步练习册答案