精英家教网 > 高中数学 > 题目详情
试用tan
α
2
表示sinα,并证明.
考点:二倍角的正弦,同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:sinα=2sin
α
2
cos
α
2
=
2sin
α
2
cos
α
2
sin2
α
2
+cos2
α
2
,再弦化切,即可得出结论.
解答: 解:sinα=2sin
α
2
cos
α
2
=
2sin
α
2
cos
α
2
sin2
α
2
+cos2
α
2
=
2tan
α
2
1+tan2
α
2
点评:本题考查二倍角的正弦、同角三角函数基本关系的运用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
4x-9y+11≥0
4x+5y-3≥0
2x-y-5≤0
,则目标函数z=2x-3y的最小值为(  )
A、-4B、-2C、-1D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax(a∈R).
(1)若不等式f(ax)>a-3的解集为R,求实数a的取值范围;
(2)设x>y>0,且xy=4,若不等式f(x)+f(y)+2ay≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(α-π)=2cos(α-2π),求
sin(7π-α)+5cos(2π-α)
3sin(
2
+α)-sin(-α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x
x
+
y
)=3
y
x
+5
y
),求
2x+
xy
+3y
x+
xy
-y
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=(m+1)x2-2(m+1)x-m的最值,其中m为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-t(x+1).
(1)若f(x)≥0对一切正实数x恒成立,求t的取值范围;
(2)设g(x)=f(x)+
t
ex
,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的t≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)求证:1n+2n+…+(n-1)n≤nn(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

袋子中共有12个球,其中有5个黑球,4个白球,3个红球,从中任取2个球(假设取到每个球的可能性都相同).已知每取到一个黑球得0分,每取到一个白球得1分,每取到一个红球得2分.用ξ表示任取2个球的得分的差的绝对值.
(1)求椭机变量ξ的分布列及ξ的数学期望Eξ;
(2)记“不等式ξx2-ξx+
1
2
>0的解集是实数集R”为事件A,求事件A发生的概率P(A).

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面内,将每个点绕原点按逆时针方向旋转45°的变换R所对应的矩阵为M,将每个点横、纵坐标分别变为原来的
2
倍的变换T所对应的矩阵为N.
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)求曲线xy=1先在变换R作用下,然后在变换T作用下得到的曲线方程.

查看答案和解析>>

同步练习册答案