精英家教网 > 高中数学 > 题目详情
求下列函数的最大值与最小值,并求出自变量x的相应取值.
(1)y=4-
1
3
sinx;
(2)y=2+3cosx.
考点:余弦函数的图象,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)由正弦函数的性质可知,当x=2kπ+
2
,k∈Z时,sinxmin=-1,当x=2kπ+
π
2
,k∈Z时,sinxmax=1可求ymax=4-
1
3
sinxmin=
13
3
,x=2kπ+
2
,k∈Z;
ymin=4-
1
3
sinxmax=
11
3
,x=2kπ+
π
2
,k∈Z.
(2)由余弦函数的性质可知,当x=2kπ,k∈Z时,cosxmax=1,当x=2kπ+π,k∈Z时,cosmin=-1,可求ymax=2+3cosxmax=5,x=2kπ,k∈Z;
ymin=2+3cosmin=-1,x=2kπ+π,k∈Z.
解答: 解:(1)∵由正弦函数的性质可知,当x=2kπ+
2
,k∈Z时,sinxmin=-1,当x=2kπ+
π
2
,k∈Z时,sinxmax=1
∴ymax=4-
1
3
sinxmin=
13
3
,x=2kπ+
2
,k∈Z;
ymin=4-
1
3
sinxmax=
11
3
,x=2kπ+
π
2
,k∈Z.
(2)∵由余弦函数的性质可知,当x=2kπ,k∈Z时,cosxmax=1,当x=2kπ+π,k∈Z时,cosmin=-1
∴ymax=2+3cosxmax=5,x=2kπ,k∈Z;
ymin=2+3cosmin=-1,x=2kπ+π,k∈Z.
点评:本题主要考查了三角函数的图象与性质,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数y=sin(x-
π
3
)的图象上所有点的纵坐标伸长到原来的2倍,再把所得的图象上所有点的横坐标向左平移
π
3
个单位长度后,得到函数f(x)的图象.
(1)求f(x)在[0,2π]上的单调递增区间;
(2)设函数g(x)=(1+sinx)f(x),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α为锐角,且点(cosα,sinα)在曲线6x2+y2=5上.求
(1)cos2α的值;
(2)tan(2α-
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0≤x≤1,求函数f(x)=4x+(1-2a)2x+1+a2的最小值m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足线性约束条件
x≥1
x-y≤0
x+2y≤9
,求Z=2x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
|x-1|-2,|x|≤1
1
1+x2
,|x|>1
,则f(
1
2
)的值为(  )
A、
1
2
B、-
3
2
C、-
9
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P(x,y)满足
y≥1
x+2y≤5
x+y≥3
,点Q(1,-1),O为坐标原点,λ|
OP
|=
OP
OQ
,则实数λ的取值范围是(  )
A、[-
10
5
,-
5
5
]
B、[
5
5
10
5
]
C、[-
10
5
5
5
]
D、[-
5
5
10
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α-β)=
1
2
,tanβ=-
1
7
,且α,β∈(0,π),求2α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在菱形ABCD中,∠DAB=60°,|
AB
|=1,求|
BC
+
DC
|的值.

查看答案和解析>>

同步练习册答案