精英家教网 > 高中数学 > 题目详情
14.如表为随机变量X的概率分布列,记成功概率p=P(X≥3),随机变量ξ~B(5,p),则P(ξ=3)=$\frac{1}{12}$.
X1234
P$\frac{1}{4}$mm$\frac{7}{12}$

分析 由离散型随机变量的概率分布列知$\frac{1}{4}+2m+\frac{7}{12}=1$,求得m值得答案.

解答 解:由离散型随机变量的概率分布列知:
$\frac{1}{4}+2m+\frac{7}{12}=1$,解得m=$\frac{1}{12}$.
∴P(ξ=3)=m=$\frac{1}{12}$.
故答案为:$\frac{1}{12}$.

点评 本题考查离散型随机变量的分布列和数学期望的求法,注意等价转化思想的合理运用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2=4.
(1)求过定点M(4,0)的圆的切线方程;
(2)直线l过点P(1,2),且与圆C交于A,B两点,若$|{AB}|=2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.曲线f(x)=xlnx+x在点x=1处的切线方程为y=2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{2^x}\;,x≤0\\-{x^2}+1,x>0\end{array}$,若f(a)=$\frac{1}{2}$,则实数a的值为-1或$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.二项式(2x-1)8的展开式中,求:
(1)二项式系数最大的项;
(2)所有二项式系数之和;
(3)求所有奇数次幂项的系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若关于x的不等式3a-ax-x2>0有实数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的各项均大于1,前n项和Sn满足2Sn=an2+n-1.
(1)求a1及数列{an}的通项公式;
(2)若bn=(1-an)•2${\;}^{{a}_{n}-1}$,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+2x-ln(x+1)(a为常数)
(1)当a=-1时,求函数f(x)的单调区间;
(2)求x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)满足xf′(x)>-f(x),则下列关系一定正确的是(  )
A.2f(1)>f(2)B.2f(2)>f(1)C.f(1)>f(2)D.f(1)<f(2)

查看答案和解析>>

同步练习册答案