精英家教网 > 高中数学 > 题目详情
7.已知数列{an}中,a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{a_n}-2,({a_n}>2)\\-{a_n}+3,({a_n}≤2)\end{array}$(n∈N*),记Sn=a1+a2+…+an,若Sn=2016,则n=1344.

分析 设a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{a_n}-2,({a_n}>2)\\-{a_n}+3,({a_n}≤2)\end{array}$,n∈N*,可得a2=-a1+3=3-a∈[1,3).对a分类讨论:当a∈[1,2]时,当a∈(0,1)时,利用递推关系即可得出.

解答 解:设a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{a_n}-2,({a_n}>2)\\-{a_n}+3,({a_n}≤2)\end{array}$,n∈N*
∴a2=-a1+3=3-a∈[1,3).
①当a∈[1,2]时,3-a∈[1,2],∴a3=-a2+3=a,….
∴当n=2k-1,k∈N*时,a1+a2=a+3-a=3,∴S2k-1=3(k-1)+a=2016,a=1时,a=2时,k不为整数舍去;
当n=2k,k∈N*时,a1+a2=a+3-a=3,∴S2k=3k=2016,k=672是整数,n=1344.
②当a∈(0,1)时,3-a∈(2,3),∴a3=a2-2=1-a∈(0,1),
∴a4=-a3+3=a+2∈(2,3),a5=a4-2=a∈(2,3),….
当n=4k,k∈N*时,a1+a2+a3+a4=a+3-a+1-a+a+2=6,∴S4k=6k=2016,k=336,∴n=1344;
当n=4k-1,k∈N*时,a1+a2+a3=a+3-a+1-a=4-a,∴S4k-1=6(k-1)+(4-a)=2016,舍去;
当n=4k-2,k∈N*时,a1+a2=3,∴S4k-2=6(k-1)+3=2016,舍去.
当4k-3,k∈N*时,∴S4k-2=6(k-1)+a=2015,舍去.
综上可得:n=1344.
故答案为:1344.

点评 本题考查了数列的递推关系、分类讨论思想方法,考查了推理能力与计算能力,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在四面体P-ABC中,PA⊥平面ABC,△ABC为正三角形,PA=2,AB=3,则该四面体外接球的表面积等于16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设{an}是公比为正数的等比数列,a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求数列{(2n+1)an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”是“a=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设ω是虚数,z=ω+$\frac{1}{ω}$是实数,且|z|≤1.
(Ⅰ)求ω的实部的取值范围;
(Ⅱ)试判断$\frac{1-ω}{1+ω}$是否为纯虚数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,已知前n项和Sn=3+2an,求数列的通项公式an等于-3×2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=x2+mx+1,若对于任意的x∈R都有f(x)≥0恒成立,则实数m的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知在△ABC中,A=60°,AC=6,BC=k,若△ABC有两解,则k的取值范围是(3$\sqrt{3}$,6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A={-1,0,1},B={y|y=cosπx,x∈A},则A∩B=(  )
A.{-1,1}B.{0,1}C.{0}D.

查看答案和解析>>

同步练习册答案