精英家教网 > 高中数学 > 题目详情
11.(1+x)8(1+y)4的展开式中x2y2的系数是168.

分析 根据(1+x)8和(1+y)4的展开式的通项公式可得x2y2的系数.

解答 解:根据(1+x)8和(1+y)4的展开式的通项公式可得,x2y2的系数为C82•C42=168,
故答案为:168

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.记n项正项数列为a1,a2,…,an,其前n项积为Tn,定义lg(T1•T2•…Tn)为“相对叠乘积”,如果有2013项的正项数列a1,a2,…,a2013的“相对叠乘积”为2013,则有2014项的数列10,a1,a2,…,a2013的“相对叠乘积”为(  )
A.2014B.2016C.3042D.4027

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.x>0时,函数y=x+$\frac{1}{x}$-1的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在某次联考测试中,学生数学成绩X~N(100,σ2)(σ>0),若P(80<X<120)=0.8,则P(0<X<80)等于(  )
A.0.05B.0.1C.0.15D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2-k}\\{y=3-2k}{\;}\end{array}\right.$(k为参数),以原点O为极点,以x轴正半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.圆C的极坐标方程为ρ=2sinθ.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B,若点M的坐标为(2,3).求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=cos(2x+$\frac{π}{3}$)-cos2x,其中x∈R,给出下列四个结论:
①函数f(x)是最小正周期为π的奇函数;
②函数f(x)图象的一条对称轴是直线x=$\frac{2π}{3}$;
③函数f(x)图象的一个对称中心为($\frac{5π}{12}$,0);
④函数f(x)的单调递增区间为[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
其中正确的结论序号②③④  

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.根据如图所示的程序语句,若输入的x值为3,则输出的y值为(  )
A.2B.3C.6D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,焦距为4,P是双曲线右支上的一点,F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是(  )
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,已知F1,F2是双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上下焦点,过F2点作以F1为圆心,|OF1|为半径的圆的切线,P为切点,若切线段PF2被一条渐近线平分,则双曲线的离心率为2.

查看答案和解析>>

同步练习册答案