精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当 时,求函数图象在点处的切线方程;

(2)当时,讨论函数的单调性;

(3)是否存在实数,对任意恒成立?若存在,求出的取值范围;若不存在,说明理由.

【答案】(1);(2)①当上单调递增;②当,时, 上单调递增,在上单调递减;③当时,上单调递增,在上单调递减;(3)

【解析】分析:(1)求出函数的导数即可得切线方程;

(2),就分类讨论即可;

(3)不妨设,则原不等式可以化为,故利用为增函数可得的取值范围.

详解:(1)当时,

所以所求的切线方程为,即

(2)

①当,即时,上单调递增.

②当,即时,

因为时,

时,

上单调递增,在上单调递减;

③当,即时,

因为时,

时,

上单调递增,在上单调递减.

(3)假设存在这样的实数,满足条件,

不妨设,由

,则函数上单调递增.

所以,即上恒成立,

所以,故存在这样的实,满足题意,其取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b,若△ABC的面积为S= c,则ab的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半圆分别为半圆轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为k(k≠0)的直线 交椭圆 两点。
(1)记直线 的斜率分别为 ,当 时,证明:直线 过定点;
(2)若直线 过点 ,设 的面积比为 ,当 时,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.

(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)

(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,侧面是等腰直角三角形,且,侧面⊥底面.

(1)若分别为棱的中点,求证:∥平面

(2)棱上是否存在一点,使二面角角,若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为为参数).

(1)求曲线的直角坐标方程;曲线的极坐标方程。

(2)当曲线与曲线有两个公共点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数内只取到一个最大值和一个最小值,且当时,;当时,.

(1)求函数的解析式.

(2)求函数的单调递增区间.

(3)是否存在实数,满足不等式?若存在,求出的范围(或值);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案