【题目】已知函数,.
(1)当 时,求函数图象在点处的切线方程;
(2)当时,讨论函数的单调性;
(3)是否存在实数,对任意,且有恒成立?若存在,求出的取值范围;若不存在,说明理由.
【答案】(1);(2)①当, 在上单调递增;②当,时, 在,上单调递增,在上单调递减;③当时,在,上单调递增,在上单调递减;(3).
【解析】分析:(1)求出函数在的导数即可得切线方程;
(2),就分类讨论即可;
(3)不妨设,则原不等式可以化为,故利用为增函数可得的取值范围.
详解:(1)当时,,,
所以所求的切线方程为,即.
(2),
①当,即时,,在上单调递增.
②当,即时,
因为或时,;
当时,,
在和上单调递增,在上单调递减;
③当,即时,
因为或时,;
当时,,
在,上单调递增,在上单调递减.
(3)假设存在这样的实数,满足条件,
不妨设,由知,
令,则函数在上单调递增.
所以,即在上恒成立,
所以,故存在这样的实,满足题意,其取值范围为.
科目:高中数学 来源: 题型:
【题目】已知半圆:,、分别为半圆与轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知斜率为k(k≠0)的直线 交椭圆 于 两点。
(1)记直线 的斜率分别为 ,当 时,证明:直线 过定点;
(2)若直线 过点 ,设 与 的面积比为 ,当 时,求 的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-5:不等式选讲
已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.
(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)
(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为2的正方形,侧面是等腰直角三角形,且,侧面⊥底面.
(1)若分别为棱的中点,求证:∥平面;
(2)棱上是否存在一点,使二面角成角,若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为(为参数).
(1)求曲线的直角坐标方程;曲线的极坐标方程。
(2)当曲线与曲线有两个公共点时,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数在内只取到一个最大值和一个最小值,且当时,;当时,.
(1)求函数的解析式.
(2)求函数的单调递增区间.
(3)是否存在实数,满足不等式?若存在,求出的范围(或值);若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com