精英家教网 > 高中数学 > 题目详情
15.设定义在(0,+∞)上的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)-log2x]=3,若方程f(x)+f′(x)=a有两个不同的实数根,则实数a的取值范围是(  )
A.(1,+∞)B.(2+$\frac{1}{ln2}$,+∞)C.(2-$\frac{1}{ln2}$,+∞)D.(3,+∞)

分析 根据题意,由单调函数的性质,可得f(x)-log2x为定值,可以设t=f(x)-log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,对其求导可得f′(x);将f(x)与f′(x)代入f(x)+f′(x)=a,求出函数的最小值,即可得答案.

解答 解:∵f(x)是定义在(0,+∞)上的单调函数,f[f(x)-log2x]=3,
∴f(x)-log2x为大于0的常数,
设t=f(x)-log2x,则f(x)=log2x+t(t>0),
又由f(t)=3,即log2t+t=3,解得t=2;
∴f(x)=log2x+2,f′(x)=$\frac{1}{xln2}$,
∴f(x)+f′(x)=log2x+2+$\frac{1}{xln2}$=a,
设g(x)=log2x+2+$\frac{1}{xln2}$,则g′(x)=$\frac{x-1}{{x}^{2}ln2}$,
∴函数g(x)在(0,1)上单调递减,(1,+∞)上单调递增,
∴x=1时,函数取得最小值2+$\frac{1}{ln2}$,
∵方程f(x)+f′(x)=a有两个不同的实数根,
∴a>2+$\frac{1}{ln2}$,
故选:B.

点评 本题考查函数零点与方程根的关系的应用,考查导数知识的运用,关键点和难点是求出f(x)的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知点A(-1,-1),B(1,1).线段AB是圆的直径,则此圆的方程是x2+y2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知m,n是两条不重合的直线,α,β是不重合的平面,下面四个命题中正确的是(  )
A.若m?α,n∥α,则m∥nB.若m⊥n,m⊥β,则n∥β
C.若α∩β=n,m∥n,则m∥α且m∥βD.若m⊥α,m⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{\begin{array}{l}{log_3}x,x>0\\{2^x},x≤0\end{array}\right.$,则$f[{f({\frac{1}{9}})}]$的值为(  )
A.$\frac{1}{4}$B.4C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若a+i=(1+2i)•i(i为虚数单位,a,t∈R),则a等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数茎叶图如图所示,去掉一个最高分和一个最低分后,所剩数据的平均数为85.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{2sinC-sinB}{sinB}$=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{{b}^{2}+{c}^{2}-{a}^{2}}$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,sinC=3sinB,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.今年双11期间国家工商总局随机抽取了100家店铺销售的100件羽绒大衣进行质量检验,按重量(单位:g)分组(重量大的质量高),得到的频率分布表如图所示:
组号重量分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185]100.100
合计1001.00
(1)请先求出频率分布表中①、②位置相应数据,再完成下列频率分布直方图;
(2)由于该产品要求质量高,决定在重量大的第3,4,5组中用分层抽样抽取6个产品再次检验,求第3,4,5组每组各抽取多少产品进入第二次检验?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则$\overrightarrow{a}$与2$\overrightarrow{a}$-$\overrightarrow{b}$夹角的余弦值为$\frac{5\sqrt{7}}{14}$.

查看答案和解析>>

同步练习册答案