| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{y=1}\\{x+y-2=0}\end{array}\right.$,解得A(1,1),
化目标函数z=x-2y为$y=\frac{x}{2}-\frac{z}{2}$,由图可知,当直线$y=\frac{x}{2}-\frac{z}{2}$过A时,直线在y轴上的截距最大,z有最小值为-1.
故选:B.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数$y=sin(2x+\frac{π}{3})$在区间$(-\frac{π}{3},\frac{π}{6})$内单调递增 | |
| B. | 函数y=cos4x的最小正周期为2π | |
| C. | 函数y=cos(x+$\frac{π}{3}$)的图象是关于点($\frac{π}{6}$,0)成中心对称的图形 | |
| D. | 函数y=tan(x+$\frac{π}{3}$)的图象是关于直线x=$\frac{π}{6}$成轴对称的图形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com