分析 由题意作出三角函数线,进而比较S△AOP,S扇形AOP,S△AOT的大小,可得答案.
解答 证明:在直角坐标系中结合单位圆作出锐角α的正弦线和正切线,![]()
由图可知sinα=MP,α=$\widehat{AP}$,tanα=AT,
∵S△AOP=$\frac{1}{2}$×MP×1=$\frac{1}{2}$sinα,
S扇形AOP=$\frac{1}{2}$×$\widehat{AP}$×1=$\frac{1}{2}$α,
S△AOT=$\frac{1}{2}$×AT×1=$\frac{1}{2}$tanα,
∵S△AOP<S扇形AOP<S△AOT,
∴MP<$\widehat{AP}$<AT,
即sinα<α<tanα,
点评 本题考查单位圆与三角函数线,难度不大,属基础题.
科目:高中数学 来源: 题型:选择题
| 1排4号 | 1排5号 | 1排8号 |
| 2排4号 | ||
| 3排1号 | 3排5号 | |
| 4排1号 | 4排2号 | 4排8号 |
| A. | 4排8号 | B. | 3排1号 | C. | 2排4号 | D. | 1排5号 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{3}$,$\frac{1}{2}$) | B. | (-∞,-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞) | C. | (-$\frac{1}{2}$,$\frac{1}{3}$) | D. | (-∞,$-\frac{1}{2}$)∪($\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (1,4) | C. | (1,5) | D. | (1,6) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=cos($\frac{x}{2}$+$\frac{π}{6}$) | B. | y=sin($\frac{x}{2}$+$\frac{π}{6}$) | C. | y=sin(2x-$\frac{π}{6}$) | D. | y=cos(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y与x具有负的线性相关关系 | |
| B. | 若r表示变量与之间相关系数,则r=0.4 | |
| C. | 当广告费为1万元时,商品的销售额为10.4万元 | |
| D. | 当广告费为1万元时,商品的销售额为10.4万元左右 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com