| A. | $4\sqrt{3}$ | B. | $4\sqrt{2}$ | C. | $2\sqrt{6}$ | D. | $2\sqrt{5}$ |
分析 根据三角形内角和定理和正弦定理,利用三角函数的恒等变换,求得A、B、C的关系,再利用正弦定理计算a+b的值.
解答 解:△ABC中,bsinA+acos(B+C)=0,
∴bsinA-acosA=0,
由正弦定理得sinBsinA-sinAcosA=0,
又A∈(0,π),∴sinA≠0,
∴sinB-cosA=0,即cosA=sinB;
∴cosA=sin($\frac{π}{2}$+A)=sinB,
∴$\frac{π}{2}$+A+B=π,即C=A+B=$\frac{π}{2}$;
或B=$\frac{π}{2}$+A,即B-A=$\frac{π}{2}$;
又∵sinC=$\frac{3}{5}$,∴B-A=$\frac{π}{2}$,
∴cosC=sin($\frac{π}{2}$-C)=sin2A=2sinAcosA=$\frac{4}{5}$,
∴1+2sinAcosA=(sinA+cosA)2=$\frac{9}{5}$,
解得sinA+cosA=$\frac{3\sqrt{5}}{5}$;
∴a+b=$\frac{c}{sinC}$(sinA+sinB)=$\frac{10}{3}$(sinA+cosA)=$\frac{10}{3}$×$\frac{3\sqrt{5}}{5}$=2$\sqrt{5}$.
故选:D.
点评 本题考查了三角恒等变换以及正弦定理与三角形内角和定理的应用问题,是综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{12}$个单位长度 | B. | 向右平移$\frac{π}{12}$个单位长度 | ||
| C. | 向左平移$\frac{π}{6}$个单位长度 | D. | 向右平移$\frac{π}{6}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{1,\frac{5}{4}}]$ | B. | [-1,1] | C. | (-∞,1] | D. | $({-∞,\frac{5}{4}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com