分析 (1)根据已知等式求得cosA的值,进而求得A.
(2)根据余弦定理建立等式,利用基本不等式的性质确定bc的最大值,进而代入三角形面积公式求得面积的最大值.
解答 解:(1)∵2sin2A=3cosA,
∴2(1-cos2A)=3cosA,
∴2cos2A+3cosA-2=0,
解得cosA=$\frac{1}{2}$,
∵0<A<π,
∴A=$\frac{π}{3}$.
(2)∵S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc,
又∵b2+c2-a2=bc,
∴a2=b2+c2-bc≥2bc-bc=bc,
当且仅当a=b时等号成立,
∴bc≤a2=($\sqrt{3}$)2=3,
∴S△ABC≤$\frac{3\sqrt{3}}{4}$.即△ABC面积的最大值是$\frac{3\sqrt{3}}{4}$.
点评 本题主要考查了正弦定理和余弦定理的运用.解题的关键是确定bc的范围.
科目:高中数学 来源: 题型:选择题
| A. | x2+y2+3x=0 | B. | x2-y2-3x=0 | C. | x2-y2+3x=0 | D. | x2+y2-3x=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{2}$) | C. | (-2,3) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 10 | C. | 8 | D. | 2+log35 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin2x | B. | y=cosx | C. | y=sin($\frac{π}{2}$-2x) | D. | y=tanx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A${\;}_{9}^{9}$A${\;}_{2}^{2}$ | B. | A${\;}_{9}^{9}$ | C. | A${\;}_{10}^{10}$ | D. | 2A${\;}_{10}^{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com