【题目】函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0);
(2)求f(x);
(3)当0<x<2时不等式f(x)>ax-5恒成立,求a的取值范围.
【答案】(1)-2(2)f(x)=x2+x-2(3)a<1+2
【解析】
试题分析:本题没有给出函数的解析式,因此属于抽象函数问题.解决抽象函数问题的方法,关键在于“凑”,即“凑”出已知或是待求解的式子.(1)中我们要“凑”出f(0);(2)中我们要“凑”出f(x);(3)中我们要“凑”出我们力所能解的基本不等式
试题解析:(1)令x=1,y=0,得f(1+0)-f(0)=(1+2×0+1)×1=2,
∴f(0)=f(1)-2=-2.(3分)
(2)令y=0,f(x+0)-f(0)=(x+2×0+1)·x=x2+x,
∴f(x)=x2+x-2.(6分)
(3)f(x)>ax-5化为x2+x-2>ax-5,ax<x2+x+3,
∵x∈(0,2),
∴a<=1+x+.
当x∈(0,2)时,1+x+≥1+2,当且仅当x=,即x=时取等号,由∈(0,2),
得(1+x+)min=1+2. ∴a<1+2 .
科目:高中数学 来源: 题型:
【题目】已知平面α⊥平面β,α∩β=n,直线lα,直线mβ,则下列说法正确的个数是( )
①若l⊥n,l⊥m,则l⊥β;②若l∥n,则l∥β;③若m⊥n,l⊥m,则m⊥α.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥,底面是的菱形,侧面是边长为的正三角形,O是AD的中点, 为的中点.
(1)求证:;
(2)若PO与底面ABCD垂直,求直线与平面所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列叙述中,正确的是( )
A.四边形是平面图形
B.有三个公共点的两个平面重合。
C.两两相交的三条直线必在同一个平面内
D.三角形必是平面图形。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)判断函数的奇偶性,并加以证明;
(2)用定义证明函数在区间上为增函数;
(3)若函数在区间上的最大值与最小值之和不小于,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过a m,房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?最低总造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系
统抽样的方法,则所选5名学生的学号可能是:( )
A、5,15,25,35,45 B、1,2,3,4,5
C、2,4,6,8,10 D、 4,13,22,31,40
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com