【题目】每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础.为了做好今年的世界睡眠日宣传工作,某社区从本辖区内同一年龄层次的人员中抽取了100人,通过问询的方式得到他们在一周内的睡眠时间(单位:小时),并绘制出如右的频率分布直方图:
![]()
(Ⅰ)求这100人睡眠时间的平均数
(同一组数据用该组区间的中点值代替,结果精确到个位);
(Ⅱ)由直方图可以认为,人的睡眠时间
近似服从正态分布
,其中
近似地等于样本平均数
,
近似地等于样本方差
,
.假设该辖区内这一年龄层次共有10000人,试估计该人群中一周睡眠时间位于区间(39.2,50.8)的人数.
附:
.若随机变量
服从正态分布
,则
,
.
科目:高中数学 来源: 题型:
【题目】设
是正整数.在一个十进制
位数的各位数字中,若含有数字8,则在每个数字8的前一位数字就不能是数字3(即不能出现38字样).试求出所有这样的
位数的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程与直线
的普通方程;
(2)直线
与曲线
交于
两点,记弦
的中点为
,点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xln x-aex(e为自然对数的底数)有两个极值点,则实数a的取值范围是( )
A.
B.(0,e)
C.
D.(-∞,e)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响.对近
年的年宣传费
和年销售量数据
作了初步处理,得到下面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.附:对于一组数据
,
,
,
,其回归直线
的斜率和截距的最小二乘法估计分别为
,
.
(1)根据散点图判断,
与
在哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据1小问的判断结果及表中数据,建立
关于
的回归方程;
(3)已知这种产品的年利润
与
的关系为
.根据2小问的结果回答下列问题:
①2年宣传费
时,年销售量及年利润的预报值是多少?
②3年宣传费
为何值时,年利润的预报值最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如下图所示,则关于这三家企业下列说法错误的是( )
![]()
A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业
C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春节期间,随着新型冠状病毒肺炎疫情在全国扩散,各省均启动重大突发公共卫生事件一级响应,采取了一系列有效的防控措施.如测量体温、有效隔离等.
(1)现从深圳市某社区的体温登记表中随机采集100个样本.据分析,人群体温近似服从正态分布
.若
表示所采集100个样本的数值在
之外的的个数,求
及X的数学期望.
(2)疫情期间,武汉大学中南医院重症监护室(ICU)主任彭志勇团队对138例确诊患者进行跟踪记录.为了分析并发症(complications)与重症患者(ICU)有关的可信程度,现从该团队发表在国际顶级医学期刊JAMA《美国医学会杂志》研究论文中获得相关数据.请将下列2×2列联表补充完整,并判断能否在犯错误的概率不超过0.1%的前提下认为“重症患者与并发症有关”?
![]()
附:若
,则
,
,
,
.
参考公式与临界值表:
,其中
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com