【题目】设
,
,
是三个不同平面,
,
是两条不同直线,有下列三个条件:(1)
,
;(2)
,
;(3)
,
.如果命题“
,
,且__________,则
”为真命题,则可以在横线处填入的条件是__________(把所有正确的序号填上).
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
(
且
).
(I)求直线
的极坐标方程及曲线
的直角坐标方程;
(Ⅱ)已知
是直线
上的一点,
是曲线
上的一点,
,
,若
的最大值为2,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,点
在线段
上移动,有下列判断:①平面
平面
;②平面
平面
;③三棱锥
的体积不变;④
平面
.其中,正确的是______.(把所有正确的判断的序号都填上)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
:
(
)的离心率
且椭圆
上的点到点
的距离的最大值为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在椭圆
上,是否存在点
,使得直线
:
与圆
:
相交于不同的两点
、
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列
,若满足
,则称数列
为“0-1数列”.定义变换
,
将“0-1数列”
中原有的每个1都变成0,1,原有的每个0都变成1,0.例如
:1,0,1,则
设
是“0-1数列”,令![]()
3,….
(Ⅰ) 若数列
:
求数列
;
(Ⅱ) 若数列
共有10项,则数列
中连续两项相等的数对至少有多少对?请说明理由;
(Ⅲ)若
为0,1,记数列
中连续两项都是0的数对个数为
,
.求
关于
的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
的离心率为
,直线
被椭圆
截得的线段长为
.
(1)求椭圆
的方程;
(2)过原点的直线与椭圆
交于
两点(
不是椭圆
的顶点),点
在椭圆
上,且
,直线
与
轴
轴分别交于
两点.
①设直线
斜率分别为
,证明存在常数
使得
,并求出
的值;
②求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com