精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\frac{x}{cosx}$的定义域为(-$\frac{π}{2}$,$\frac{π}{2}$),当|xi|<$\frac{π}{2}$时(i=1,2,3),f(x1)+f(x2)≥0,f(x2)+f(x3)≥0,f(x3)+f(x1)≥0,则下列结论正确的是(  )
A.x1+x2+x3>0B.x1+x2+x3<0C.f(x1+x2+x3)≥0D.f(x1+x2+x3)≤0

分析 由函数的导函数得知在x∈(0,$\frac{π}{2}$)是单调递增的,再由奇偶性得到在x∈(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递增,通过单调性与奇偶性相结合得到x1+x2+x3≥0,所以对应的函数值可以确定.

解答 解:∵函数f(x)=$\frac{x}{cosx}$的定义域为(-$\frac{π}{2}$,$\frac{π}{2}$),且f(-x)=-f(x)
∴f(x)为奇函数
∵f′(x)=$\frac{cosx+xsinx}{(cosx)^{2}}$
∴f(x)在x∈(0,$\frac{π}{2}$)是单调递增的.
∴f(x)在x∈(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递增.
∵f(x1)+f(x2)≥0,
∴f(x1)≥-f(x2)≥0,
∴f(x1)≥f(-x2)≥0,
∴x1≥-x2
同理可得:x2≥-x3,x3≥-x1
∴x1+x2≥0,x2+x3≥0,x3+x1≥0
∴x1+x2+x3≥0,
∴f(x1+x2+x3)≥f(0)=0,
故选C

点评 本题考查由函数的导函数和奇偶性得到单调性,从而得到x1+x2+x3≥0,所以对应的函数值可以确定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.双曲线x2-$\frac{{y}^{2}}{3}$=1的焦点坐标为(-2,0),(2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线9x2-16y2=-144的实轴长等于6,其渐近线与圆x2+y2-2x+m=0相切,则m=$\frac{16}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线$\frac{y^2}{4}-{x^2}=1$的顶点到其渐近线的距离等于$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,多面体ABCDEF中,四边形ABCD为菱形,且∠DAB=60°,EF∥AC,AD=2,EA=ED=EF=$\sqrt{3}$.
(Ⅰ)求证:AD⊥BE;
(Ⅱ)若BE=$\sqrt{5}$,求三棱锥F-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{x^2}{16}-\frac{y^2}{b^2}=1({b>0})$的右焦点与抛物线y2=20x的焦点重合,则双曲线C的渐近线方程为(  )
A.4x±3y=0B.3x±4y=0C.16x±9y=0D.9x±16y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右焦点为F(c,0),若圆C:(x-c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点E(1,0)作两条互相垂直的直线交抛物线y2=4x于点A、B、C、D,且M、N分别是AB、CD的中点,则三角形EMN面积的最小值为(  )
A.2B.3C.$\frac{1}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线与直线l:$\sqrt{3}$x-y=1平行,且双曲线C的一个焦点到渐近线的距离为2$\sqrt{3}$,则双曲线C的标准方程为$\frac{x^2}{4}-\frac{y^2}{12}=1$.

查看答案和解析>>

同步练习册答案