精英家教网 > 高中数学 > 题目详情

【题目】已知.

1)求函数的极值;

2)若函数在区间内有两个零点,求的取值范围;

3)求证:当时, .

【答案】(1无极大值;(2;(3)证明见解析.

【解析】试题分析:(1)对函数进行求导,令,结合极值的定义得结果;(2)由对函数求导得到函数上单调递减, 单调递增,要想有两个零点结合数形结合思想可得等价于解得结果;(3)问题等价于,由(1)知的最小值为,令)使得成立即可.

试题解析:(1

,由,得

上单调递减,在上单调递增,

无极大值.

2

,易得上单调递减,在上单调递增,

要使函数内有两个零点,

,即

,即的取值范围是.

3)问题等价于

由(1)知的最小值为

易知上单调递增, 上单调递减

故当时, 成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的焦距为,且经过点

(Ⅰ)求椭圆的方程;

(Ⅱ)是椭圆上两点,线段的垂直平分线经过,求面积的最大值(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取名学生,其中男生名;在这名学生中选择社会科学类的男生、女生均为名.

(1)试问:从高一年级学生中随机抽取人,抽到男生的概率约为多少?

(2)根据抽取的名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过的前提下认为科类的选择与性别有关?

选择自然科学类

选择社会科学类

合计

男生

女生

合计

附: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的奇函数.

(1)求实数的值;

(2)若,不等式上恒成立,求实数的取值范围;

(3)若 上最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,点在椭圆上, 为坐标原点.

(1)求椭圆的方程;

(2)已知点为椭圆上的三点,若四边形为平行四边形,证明:四边形的面积为定值,并求该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:

(1)P(A),P(B),P(C).

(2)1张奖券的中奖概率.

(3)1张奖券不中特等奖,且不中一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别是,已知为锐角,且.

(Ⅰ)求的大小;

(Ⅱ)设函数,其图象上相邻两条对称轴间的距离为.将函数的图象向左平移个单位,得到函数的图象,求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体中, 分别是 的中点,

(Ⅰ)求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)在线段上是否存在一点,使得二面角,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,短轴的一个端点为.过椭圆左顶点的直线与椭圆的另一交点为.

(1)求椭圆的方程;

(2)若与直线交于点,求的值;

(3)若,求直线的倾斜角.

查看答案和解析>>

同步练习册答案