精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,BA⊥AC,AB=AC=A1B=2,顶点A1在底面ABC上的射影恰为点B.
(1)求异面直线AA1与BC所成角的大小;
(2)在棱B1C1上确定一点P,使AP=
14
,并求出二面角P-AB-A1的平面角的正弦值.
考点:与二面角有关的立体几何综合题,异面直线及其所成的角
专题:空间角
分析:(1)以A为原点建立空间直角坐标系,利用向量法能求出AA1与棱BC所成的角的大小.
(2)分别求出平面P-AB-A1的法向量和平面ABA1的法向量,利用向量法能求出二面角P-AB-A1的平面角的正弦值.
解答: 解:(1)如图,以A为原点建立空间直角坐标系,
则C(2,0,0),B(0,2,0),A1(0,2,2),B1(0,4,2),
AA1
=(0,2,2),
BC
=
B1C1
=(2,-2,0),
cos<
AA1
BC
>=
-4
8
8
=-
1
2

∴AA1与棱BC所成的角是
π
3

(2)设
B1P
B1C1
=(2λ,-2λ,0)

则P(2λ,4-2λ,2),
AP
=(2λ,4-2λ,2)

∴|
AP
|=
4λ2+(4-2λ)2+4
=
14
,解得λ=
1
2
λ=
3
2
(舍),
则P为棱B1C1的中点,其坐标为P(1,3,2),
设平面P-AB-A1的法向量为
n1
=(x,y,z)

n1
AP
=x+3y+2z=0
n1
AB
=2y=0
,令z=1,得
n1
=(-2,0,1),
由题意知平面ABA1的法向量为
n2
=(1,0,0),
设二面角P-AB-A1的平面角为θ,
则cosθ=|cos<
n1
n2
>|=|
-2
5
|=
2
5
5

∴sinθ=
1-(
2
5
5
)2
=
5
5

∴二面角P-AB-A1的平面角的正弦值为
5
5
点评:本题考果二面角的异面直线所成角的大小的求法,考查二面角的正弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cosα=-
3
5
,sinα=
4
5
,那么α的终边所在的象限为(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

甲工作室有1名高级工程师A1和3名工程师B1,B2,B3,乙工作室有2名高级工程师A2,A3和1名工程师B4,现要从甲工作室中选出2人,从乙工作室中选出1人支援外地建设.
(Ⅰ)试问:一共有多少种不同的选法?请列出所有可能的选法;
(Ⅱ)求选出的3人均是工程师的概率:
(Ⅲ)求选出的3人中至少有1名高级工程师的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若
3
a=2bsinA.
(1)求角B的大小;
(2)若△ABC是锐角三角形,且b=
3
,a+c=3,a>c,求a、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一走廊拐角处的横截面如图所示,已知内壁FG和外壁BC都是半径为1m的四分之一圆弧,AB,DC分别与圆弧BC相切于B,C两点,EF∥AB,GH∥CD且两组平行墙壁间的走廊宽度都是1m.
(1)若水平放置的木棒MN的两个端点M,N分别在外壁CD和AB上,且木棒与内壁圆弧相切于点P,设∠CMN=θ,若θ=
π
4
,试求出木棒MN的长度a;
(2)若一根水平放置的木棒能通过该走廊拐角处,请问木棒长度能否大于a,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比大于1的等比数列,Sn为数列{an}的前{an}项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式.
(2)令bn=lna3n+1,n=1,2,…,求数列{bn}的前n项和T.

查看答案和解析>>

科目:高中数学 来源: 题型:

在本市某机关今年的公务员考试成绩中随机抽取25名考生的笔试成绩,并分成5组,得到频率分布直方图如图所示.已知成绩落在第2组[110,120)内的人数为8人.
(1)求m,n值;
(2)根据直方图估计这25名考生的平均成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项a1=2,a7=4a3,前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)设bn=
Sn-4an-4
n
,n∈N*,求bn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kx3-3x2+3
(1)当k=0时,求函数f(x)的图象与直线y=x-1所围封闭图形的面积;
(2)当k>0时,求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案