精英家教网 > 高中数学 > 题目详情

【题目】过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )
A.
B.8
C.
D.10

【答案】C
【解析】设圆的方程为x2+y2+Dx+Ey+F=0,则

∴D=﹣2,E=4,F=﹣20,

∴x2+y2﹣2x+4y﹣20=0,

令x=0,可得y2+4y﹣20=0,

∴y=﹣2±2

∴|MN|=4

所以答案是:C.


【考点精析】利用圆的一般方程对题目进行判断即可得到答案,需要熟知圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C的对边分别为a、b、c,且 ,B=C. (Ⅰ)求cosB的值;
(Ⅱ)设函数f(x)=sin(2x+B),求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:(a-1)xyb=0,l2axby-4=0,求满足下列条件的ab的值.
(1)l1l2 , 且l1过点(1,1);
(2)l1l2 , 且l2在第一象限内与两坐标轴围成的三角形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠c},则 (其中a+c≠0)的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数f(x)=5sin3x+5 cos3x,下列说法正确的是(
A.函数f(x)关于x= π对称
B.函数f(x)向左平移 个单位后是奇函数
C.函数f(x)关于点( ,0)中心对称
D.函数f(x)在区间[0, ]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求圆心在直线 x 2 y 3 = 0 上,且过点A(2,-3),B(-2,-5)的圆C的方程.
(1)求圆心在直线 上,且过点A(2,-3),B(-2,-5)的圆C的方程.
(2)设 是圆C上的点,求 的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的焦距为4 ,且椭圆C过点(2 ,1). (Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C与y轴负半轴的交点为B,如果直线y=kx+1(k≠0)交椭圆C于不同的两点E、F,且B,E,F构成以EF为底边,B为顶点的等腰三角形,判断直线EF与圆x2+y2= 的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点
(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论;
(3)求DB与平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件 ,且目标函数z=ax+y仅在点(4,1)处取得最大值,则原点O到直线ax﹣y+17=0的距离d的取值范围是( )
A.(4 ,17]
B.(0,4
C.( ,17]
D.(0,

查看答案和解析>>

同步练习册答案